МАТЕМАТИКА

Учебное пособие для слушателей подготовительных образовательных программ

Министерство науки и высшего образования Российской Федерации Байкальский государственный университет

МАТЕМАТИКА

Учебное пособие для слушателей подготовительных образовательных программ

> Иркутск Издательство БГУ 2020

> > _

УДК 51(075.8) ББК 22.1я7 М34

> Печатается по решению редакционно-издательского совета Байкальского государственного университета

Авторы

Н.В. Антипина, А.В. Баенхаева, О.В. Леонова, С.В. Тимофеев

Рецензенты канд. физ.-мат. наук, доц. В.Р. Абдуллин канд. физ.-мат. наук, доц. Н.В. Мамонова

М34 Математика: учеб. пособие для слушателей подготовит. образоват. программ / Н.В. Антипина, А.В. Баенхаева, О.В. Леонова, С.В. Тимофеев. – Иркутск: Изд-во БГУ, 2020. – 109 с. – Режим доступа: http://lib-catalog.bgu.ru.

Содержит материал, необходимый для освоения основного вузовского математического курса. Представлены основы теории, базовые формулы, примеры решения задач, задачи для решения на семинарах и самостоятельного решения.

Для слушателей подготовительных образовательных программ.

УДК 51(075.8) ББК 22.1я7

Оглавление

Введение	4
Глава 1. Алгебраические выражения	5
§ 1. Преобразование числовых выражений	5
§ 2. Вычисление значений степенных выражений	15
§ 3. Преобразование алгебраических выражений	24
Глава 2. Уравнения и системы уравнений	32
§ 1. Линейные, квадратные и рациональные уравнения	32
§ 2. Иррациональные уравнения	41
§ 3. Системы уравнений	46
§ 4. Показательные уравнения	53
§ 5. Логарифм положительного числа по заданному основанию	59
§ 6. Логарифмические уравнения	63
§ 7. Формулы тригонометрии и их использование для преобразования тригонометрических выражений	67
§ 8. Тригонометрические уравнения	
Глава 3. Функции и графики	82
§ 1. Линейная функция	82
§ 2. Обратная функция	84
§ 3. Квадратичная функция	85
§ 4. Функция $y = \sqrt{x}$	87
§ 5. Показательная функция	88
§ 6. Логарифмическая функция	90
§ 7. Преобразование графиков	92
Ответы	102

Введение

Учебное пособие предназначено для проведения практических занятий для иностранных слушателей курсов на подготовительном факультете университета, готовящихся к последующему обучению в вузах России. Учащиеся из разных стран мира имеют различный уровень знаний в области математики, поэтому главной задачей является устранение пробелов в них и создание платформы необходимой математической терминологии на русском языке для последующего использования ее в процессе обучения.

В пособии изложен материал основных разделов школьного курса математики, что соответствует рабочей программе подготовительных факультетов высших учебных заведений по данной дисциплине. Каждый раздел включает необходимый теоретический материал (определения, основные формулы и свойства), который иллюстрируется достаточным количеством примеров, и задачи для самостоятельной работы, методически расположенные от простого к сложному. В конце пособия все задания для самостоятельной работы снабжены ответами, а наиболее сложные из них — методическими указаниями к решению. Пособие также содержит графический материал, позволяющий иностранным слушателям восстановить и систематизировать знания по графикам и свойствам основных элементарных функций.

В зависимости от уровня подготовки учащихся и конкретных задач обучения возможно изменение последовательности подачи учебного материала и выборочное его использование.

Пособие поможет систематизировать базовые теоретические знания иностранных учащихся в области математики для решения задач в профессиональной деятельности, развить у них математическое и логическое мышление, выработать и активизировать у студентов практические навыки применения теоретических знаний для решения профессиональных задач, а также умение аналитически мыслить.

Пособие рекомендовано иностранным гражданам — слушателям подготовительных факультетов, языковых курсов, имеющих начальную языковую подготовку, иностранным студентам первого курса для повторения теоретического материала, обобщения знаний из школьной математики, а также самостоятельной подготовки к поступлению в российские вузы.

Глава 1. Алгебраические выражения

§ 1. Преобразование числовых выражений

Числовым выражением называют всякую имеющую смысл запись, которая содержит числа, знаки арифметических действий и скобки.

Например, $3 + 5 \cdot (7 - 4)$ – числовое выражение, а 3+):–(5 – не числовое выражение, а бессмысленный набор символов.

Алгебраическим выражением называют всякую имеющую смысл запись, которая содержит числа, переменные, знаки арифметических действий и скобки.

Алгебраические выражения отличаются от числовых выражений тем, что содержат переменные. Например, 2a - (3b + 10) - алгебраическое выражение.

Числовые и алгебраические выражения могут быть очень сложными. Для их вычисления и упрощения ниже приводятся свойства и формулы.

Действия с дробями

Обыкновенной дробью называется одна или несколько равных частей единицы (целого).

Обыкновенная дробь записывается в виде $\frac{a}{b}$ с помощью дробной черты и двух натуральных чисел a и b. Число a называется числителем, а число b — знаменателем обыкновенной дроби $\frac{a}{b}$.

Примеры обыкновенных дробей:
$$\frac{3}{7}$$
, $\frac{8}{5}$, $\frac{1}{11}$, $\frac{263}{129}$.

Десятичной дробью называется обыкновенная дробь, знаменатель которой равен 10, 100, 1000 и т.д.

Например,
$$\frac{1}{10} = 0.1$$
, $\frac{71}{100} = 0.71$, $-\frac{347}{1000} = -0.347$.

Если $a\!<\!b$, то дробь $\frac{a}{b}$ называется *правильной дробью*. Если $a\!\geq\!b$, то дробь $\frac{a}{b}$ называется *неправильной дробью*.

Например, $\frac{3}{7}$, $\frac{1}{11}$ — это правильные дроби, а дроби $\frac{8}{5}$, $\frac{263}{129}$ — неправильные.

Число, которое состоит из целого числа (целой части) и правильной дроби (дробной части), называется *смешанным числом*.

Например,
$$3\frac{2}{9}$$
, $1\frac{1}{4}$, 10,65 — это смешанные числа.

Пюбое смешанное число можно записать в виде неправильной дроби. Для этого целую часть умножают на знаменатель дробной части и прибавляют числитель дробной части. Полученная сумма — это числитель неправильной дроби, а знаменатель остается прежним.

Например,
$$3\frac{2}{9} = \frac{3 \cdot 9 + 2}{9} = \frac{29}{9}$$
.

Любую неправильную дробь можно записать в виде смешанного числа. Для этого делят числитель на знаменатель (с остатком). Полученное число будет целой частью, а остаток — числителем дробной части. При этом говорят: «Мы выделили целую часть из неправильной дроби».

Например,
$$\frac{53}{4} = 13\frac{1}{4}$$
.

Любое целое число можно представить в виде обыкновенной дроби со знаменателем 1.

Например,
$$7 = \frac{7}{1}$$
.

Для преобразования числовых и алгебраических выражений используются следующие формулы.

Основные формулы

В дальнейшем будем предполагать, что знаменатель всех дробей не равен нулю.

1.
$$\frac{a}{b} = \frac{a \cdot c}{b \cdot c} = \frac{c \cdot a}{c \cdot b}$$
;

$$2. \quad \frac{a}{c} + \frac{b}{c} = \frac{a+b}{c};$$

3.
$$\frac{a}{b} \pm \frac{c}{d} = \frac{ad}{bd} \pm \frac{bc}{bd} = \frac{ad \pm bc}{bd}$$
;

4.
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$
;

5.
$$\frac{a}{b}$$
: $\frac{c}{d} = \frac{a \cdot d}{b \cdot c} = \frac{ad}{bc}$;

6.
$$\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{b} : c = \frac{a}{b} \cdot \frac{1}{c} = \frac{a}{bc};$$

7.
$$\frac{a}{\left(\frac{b}{c}\right)} = a : \frac{b}{c} = a \cdot \frac{c}{b} = \frac{ac}{b}$$
.

Примеры

Вычислить:

1.
$$\frac{14}{3-\frac{7}{3}}$$
.

Решение.

$$\frac{14}{3 - \frac{7}{3}} = \frac{14}{\frac{9}{3} - \frac{7}{3}} = \frac{14}{\left(\frac{2}{3}\right)} = 14 : \frac{2}{3} = 14 \cdot \frac{3}{2} = \frac{2 \cdot 7 \cdot 3}{2} = 7 \cdot 3 = 21.$$

Ответ: 21.

$$2. \ \frac{\frac{25}{3} - 7}{\frac{2}{3}} \ .$$

Решение.

$$\frac{\frac{25}{3} - 7}{\frac{2}{3}} = \frac{\frac{25}{3} - \frac{21}{3}}{\frac{2}{3}} = \frac{\left(\frac{4}{3}\right)}{\left(\frac{2}{3}\right)} = \frac{4}{3} : \frac{2}{3} = \frac{4}{3} \cdot \frac{3}{2} = 2.$$

Ответ: 2.

3.
$$\left(\frac{3}{5} - 0.25 - \frac{1}{8}\right) \cdot 3.2 + \frac{9}{2} : 10.$$

Решение.

Данное задание лучше выполнять по действиям:

1)
$$\left(\frac{3}{5} - 0.25 - \frac{1}{8}\right) = \frac{3}{5} - \frac{25}{100} - \frac{1}{8} = \frac{3}{5} - \frac{1}{4} - \frac{1}{8} = \frac{3 \cdot 8}{5 \cdot 8} - \frac{2 \cdot 5}{4 \cdot 2 \cdot 5} - \frac{5}{5 \cdot 8} = \frac{3}{5} - \frac{1}{4} - \frac{1}{8} = \frac{3}{5} - \frac{1}{8} - \frac{1$$

7

$$=\frac{24-10-5}{8\cdot 5}=\frac{9}{8\cdot 5}.$$

2)
$$\frac{9}{8.5} \cdot 3.2 = \frac{9}{8.5} \cdot 3\frac{2}{10} = \frac{9}{8.5} \cdot 3\frac{1}{5} = \frac{9}{8.5} \cdot \frac{16}{5} = \frac{9 \cdot 2 \cdot 8}{8 \cdot 5 \cdot 5} = \frac{9 \cdot 2}{25} = \frac{18}{25}$$

3)
$$\frac{9}{2}$$
: $10 = \frac{9}{2} \cdot \frac{1}{10} = \frac{9}{2 \cdot 10} = \frac{9}{20}$.

4)
$$\frac{18}{25} + \frac{9}{20} = \frac{18}{5 \cdot 5} + \frac{9}{4 \cdot 5} = \frac{18 \cdot 4}{5 \cdot 5 \cdot 4} + \frac{9 \cdot 5}{4 \cdot 5 \cdot 5} = \frac{72}{5 \cdot 5 \cdot 4} + \frac{45}{4 \cdot 5 \cdot 5} = \frac{117}{4 \cdot 5 \cdot 5} = \frac{117}{100} = 1{,}17$$

Ответ: 1,17.

4.
$$2 - \frac{3\frac{1}{3} \cdot 1,9 + 19,5 : 4\frac{1}{2}}{\frac{62}{75} - 0,16}$$

Решение.

1)
$$3\frac{1}{3} \cdot 1,9 = 3\frac{1}{3} \cdot 1\frac{9}{10} = \frac{10}{3} \cdot \frac{19}{10} = \frac{19}{3}$$
.

2)
$$19.5: 4\frac{1}{2} = 19\frac{5}{10}: 4\frac{1}{2} = 19\frac{1}{2}: \frac{9}{2} = \frac{39}{2} \cdot \frac{2}{9} = \frac{3 \cdot 13}{3 \cdot 3} = \frac{13}{3}.$$

3)
$$\frac{19}{3} + \frac{13}{3} = \frac{32}{3}$$
.

4)
$$\frac{62}{75} - 0.16 = \frac{62}{75} - \frac{16}{100} = \frac{62}{75} - \frac{4}{25} = \frac{62}{75} - \frac{12}{75} = \frac{50}{75} = \frac{2}{3}$$
.

5)
$$\frac{32}{3} : \frac{2}{3} = \frac{32}{3} \cdot \frac{3}{2} = 16$$

6)
$$2-16=-14$$
.

Ответ: –14.

5. Расположить в порядке возрастания:

$$\frac{\frac{1}{3} + \frac{1}{60}}{100}$$
, $4 \cdot (0.03)^2$, 0.003.

Решение.

Здесь предложен лишь один вариант решения:

 $4 \cdot (0.03)^2$:

$$4 \cdot \frac{3}{100} \cdot \frac{3}{100} = 2 \cdot \frac{3}{100} \cdot 2 \cdot \frac{3}{100} = \frac{6}{100} \cdot \frac{6}{100}$$

$$\frac{\frac{1}{3} + \frac{1}{60}}{100}$$
:

$$\frac{\frac{1}{3} + \frac{1}{60}}{100} = \left(\frac{20}{60} + \frac{1}{60}\right) \cdot \frac{1}{100} = \frac{21}{60} \cdot \frac{1}{100} = \frac{7}{20} \cdot \frac{1}{100} = \frac{1}{20} \cdot \frac{7}{100} = \frac{5}{100} \cdot \frac{7}{100}.$$

0,003:

$$0,003 = \frac{3}{1000} = \frac{1}{20} \cdot \frac{3}{50} = \frac{5}{100} \cdot \frac{6}{100}$$

Следовательно,

$$\frac{6}{100} \cdot \frac{6}{100} > \frac{5}{100} \cdot \frac{7}{100} > \frac{5}{100} \cdot \frac{6}{100}$$
.

Other: 0,003;
$$\frac{\frac{1}{3} + \frac{1}{60}}{100}$$
; $4 \cdot (0,03)^2$.

- 6. Какому из данных промежутков принадлежит число $\frac{7}{18}$?
- 1) [0,25; 0,3];
- 2) [0,3; 0,35];
- 3) [0,35; 0,4];
- 4) [0,4; 0,45].

Решение.

$$\frac{7}{18} = \frac{7 \cdot 5}{18 \cdot 5} = \frac{35}{90}$$
. Ho $\frac{35}{90} > \frac{35}{100} = 0.35 \Rightarrow \frac{7}{18} > 0.35$.

C другой стороны,
$$0.4 = \frac{4}{10} = \frac{2}{5} = \frac{2 \cdot 18}{5 \cdot 18} = \frac{36}{90}$$
. Так как

$$\frac{36}{90} > \frac{35}{90} = \frac{7}{18} \Rightarrow 0.35 \le \frac{7}{18} \le 0.4.$$

Ответ: 3) [0,35; 0,4].

Задачи для самостоятельного решения

Действия с обыкновенными дробями

1. Найдите значение выражения
$$\frac{12}{20 \cdot 3}$$
.

2. Найдите значение выражения
$$\frac{27}{5 \cdot 4}$$
 .

3. Вычислите:
$$\frac{4}{25} + \frac{15}{4}$$
.

4. Вычислите:
$$\frac{3}{2} - \frac{9}{5}$$
.

5. Вычислите:
$$\frac{3}{4} + \frac{2}{5}$$
.

6. Вычислите:
$$\frac{7}{9} - \frac{2}{3}$$
.

7. Вычислите:
$$5\frac{5}{12} + 3\frac{7}{18}$$
.

8. Вычислите:
$$12\frac{8}{15} - 9\frac{16}{25}$$
.

9. Вычислите:
$$41\frac{7}{8} + \frac{3}{2}$$
.

10. Вычислите:
$$20\frac{1}{4} - \frac{1}{6}$$
.

11. Вычислите:
$$14\frac{5}{9} + 21\frac{5}{12}$$
.

12. Вычислите:
$$26\frac{17}{24} - 12\frac{25}{32}$$
.

13. Вычислите:
$$46\frac{5}{14} - 39\frac{11}{21}$$
.

14. Найдите значение выражения
$$\frac{1}{\frac{1}{18} - \frac{1}{21}}$$
.

15. Найдите значение выражения
$$\frac{0.9}{1+\frac{1}{8}}$$
.

16. Найдите значение выражения
$$18 \cdot \left(\frac{1}{9}\right)^2 - 20 \cdot \frac{1}{9}$$
.

- 17. Найдите значение выражения $4\frac{4}{9}:\frac{4}{9}$
- 18. Найдите значение выражения $\left(\frac{19}{8} + \frac{11}{12}\right) : \frac{5}{48}$.
- 19. Найдите значение выражения $\left(2\frac{3}{4} + 2\frac{1}{5}\right) \cdot 16$.
- 20. Найдите значение выражения $1\frac{8}{17}:\left(\frac{12}{17}+2\frac{7}{11}\right)$.

Действия с десятичными дробями

- 1. Найдите значение выражения $\frac{2,4}{2,9-1,4}$.
- 2. Найдите значение выражения $\frac{6,9-1,5}{2,4}$.
- 3. Найдите значение выражения $\frac{9,4}{4,1+5,3}$.
- 4. Найдите значение выражения $\frac{6,9+4,1}{0,2}$.
- 5. Найдите значение выражения $\frac{24}{3,2 \cdot 2}$.
- 6. Найдите значение выражения $\frac{4,8 \cdot 0,4}{0,6}$.
- 7. Найдите значение выражения $\frac{21}{0.6 \cdot 2.8}$.
- 8. Найдите значение выражения $\frac{1,23\cdot 45,7}{12,3\cdot 0,457}$.
- 9. Найдите значение выражения $\frac{1}{4}$ + 0,7.
- 10. Найдите значение выражения $\left(\frac{3}{4} + 2\frac{3}{8}\right) \cdot 25,8.$
- 11. Найдите значение выражения $\left(2\frac{4}{7} 1,2\right) \cdot 5\frac{5}{6}$.
- 12. Найдите значение выражения $\left(2\frac{4}{7}-2,5\right):\frac{1}{70}$.
- 13. Найдите значение выражения: $5,4 \cdot 0,8 + 0,08$.

- 14. Найдите значение выражения: 0,03 · 0,3 · 30000.
- 15. Найдите значение выражения 0,007 · 7 · 700.

Сравнение чисел

1. Выберите меньшее из чисел:

1) $\frac{2}{7}$ 2) $\frac{3}{5}$	3) 0,55	4) 0,5
-----------------------------------	---------	--------

2. Выберите меньшее значение выражения:

1) $\frac{2}{0,3}$ 2) 2.0,3	3) $\frac{1}{2} - \frac{1}{3}$	4) $\frac{1}{2} + \frac{1}{3}$
-----------------------------	--------------------------------	--------------------------------

3. Выберите большее из чисел:

1) 0,7 2)
$$\frac{7}{9}$$
 3) $\frac{9}{7}$ 4) $\frac{4}{5}$

4. Выберите большее из чисел:

1) $\frac{2}{7}$ 2) $\frac{3}{5}$	3) 0,55	4) 0,5
-----------------------------------	---------	--------

5. Запишите выражения в порядке убывания: $\frac{61}{100} \cdot 0{,}02; \left(0{,}11\right)^2; \frac{3}{1000} + \frac{1}{50} + \frac{1}{10}.$

$$\frac{3}{1000} + \frac{1}{50} + \frac{1}{10}; (0,11)^{2}; \frac{61}{100} \cdot 0,02. \qquad (0,11)^{2}; \frac{3}{1000} + \frac{1}{50} + \frac{1}{10}; \frac{61}{100} \cdot 0,02.$$

$$\frac{3}{1000} + \frac{1}{50} + \frac{1}{10}; \frac{61}{100} \cdot 0,02; (0,11)^{2}. \qquad \frac{61}{100} \cdot 0,02; (0,11)^{2}; \frac{3}{1000} + \frac{1}{50} + \frac{1}{10}.$$

6. Запишите числа в порядке возрастания: 0,1439; 1,3; 0,14.

1) 0,1439; 0,14; 1,3 2) 1,3; 0,14; 0,1439 3) 0,1439; 1,3; 0,14 4) 0,14; 0,1439	9; 1,3
--	--------

7. Запишите числа в порядке убывания: 0,1327; 0,014; 0,13.

1) 0,1327; 0,014;	2) 0,014; 0,13;	3) 0,1327; 0,13;	4) 0,13; 0,014;
0,13	0,1327	0,014	0,1327

8. Запишите выражения в порядке возрастания: $(0.12)^2; \frac{0.6 \cdot 0.35}{15}; \frac{3}{200}.$

1)
$$(0,12)^2$$
; $\frac{3}{200}$; $\frac{0,6 \cdot 0,35}{15}$.
2) $\frac{3}{200}$; $(0,12)^2$; $\frac{0,6 \cdot 0,35}{15}$.
3) $(0,12)^2$; $\frac{0,6 \cdot 0,35}{15}$; $\frac{3}{200}$.
4) $\frac{0,6 \cdot 0,35}{15}$; $(0,12)^2$; $\frac{3}{200}$.

9. Выберите выражения, большие нуля:

1) $\frac{2}{3} - \frac{3}{4}$	2) -(-0,6)·(-0,5)	3) $\frac{-2,5-3}{2,5-3}$	4) 0,3 ² – 0,3
--------------------------------	-------------------	---------------------------	---------------------------

10. Выберите верные равенства:

1) $2 \cdot \frac{1}{3} - \frac{1}{4} = \frac{1}{6}$	$2) \ \frac{11}{14} : 3\frac{1}{7} = 0,25$
3) $1,75 - 2\frac{1}{3} = -\frac{7}{12}$	4) $1.6: \left(\frac{2}{3}:\frac{5}{6}\right) = 4$

11. Установите соответствие между обыкновенными и десятичными дробями:

A. $\frac{5}{8}$	Б. $\frac{3}{25}$	B. $\frac{1}{2}$	$\Gamma. \ \frac{1}{50}$
1) 0,5	2) 0,02	3) 0,12	4) 0,625

12. Установите соответствие между выражениями и их значениями:

A. $5-1\frac{4}{5}$	Б. 36:80	B. $2\frac{1}{2} - \frac{3}{4}$
1) 3,2	2) 1,75	3) 0,45

13. Выберите выражения, которые равны 0,25:

1) $2.5 - \frac{9}{4}$ 2) 3:543) $\frac{1}{2} \cdot \frac{6}{7}:1\frac{5}{7}$ 4) $\frac{34}{3} - 2.75:11$

14. В каком отрезке находится число $\frac{7}{11}$?

1) [0,4; 0,5] 2) [0,5; 0,6] 3) [0,6; 0,7] 4) [0,7; 0,8]

15. В каком отрезке находится число $\frac{2}{9}$?

1) [0,1; 0,2] 2) [0,2; 0,3] 3) [0,3; 0,4] 4) [0,4; 0,5]

§ 2. Вычисление значений степенных выражений

Степени и их свойства

Степенью числа a с натуральным показателем n называется произведение n множителей, каждый из которых равен a:

$$a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n \quad pas}.$$

Число a называется основанием степени, число n – показателем степени. Например, $2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 32$, $4^3 = 4 \cdot 4 \cdot 4 = 64$, $10^4 = 10 \cdot 10 \cdot 10 \cdot 10 = 1000$.

Основные формулы

Для любых натуральных m и n и любых $a \ge 0$ и $b \ge 0$ справедливы равенства:

9.
$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$10.\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$11.\sqrt[m]{\sqrt[n]{a}} = \sqrt[m \cdot n]{a}$$

$$12.\sqrt[m]{a} = \sqrt[m:n]{a^n},$$

$$13.\sqrt[m]{a^n} = a^{\frac{n}{m}}$$

$$14. \sqrt{a} = a^{\frac{1}{2}},$$

15.
$$a^0 = 1$$
,

$$16. a^1 = a$$

1.
$$1^a = 1$$
,

$$2. \quad a^b \cdot a^c = a^{b+c},$$

3.
$$\frac{a^{b}}{a^{c}} = a^{b-c}$$
,

$$4. b^c \cdot c^a = (bc)^a,$$

$$5. \ \frac{b^c}{c^a} = \left(\frac{b}{c}\right)^a,$$

6.
$$(a^b)^c = (a^c)^b = a^{bc}$$
,

7.
$$a^{-b} = \frac{1}{a^b}$$
,

8.
$$\left(\frac{a}{b}\right)^{-c} = \left(\frac{b}{a}\right)^{c}$$
.

Примеры

Вычислить:

1.
$$2^{-1} \cdot (-10)^2 - 0.2 \cdot (-10)^3$$
.

$$2^{-1} \cdot (-10)^2 - 0.2 \cdot (-10)^3 = \frac{1}{2} \cdot (-1)^2 \cdot 10^2 - \frac{2}{10} \cdot (-1)^3 \cdot 10^3 = \frac{10^2}{2} - (-1) \cdot 2\frac{10^3}{10} = 50 + 2 \cdot 10^2 = 50 + 200 = 250.$$

Ответ: 250.

2.
$$5 \cdot (10)^{-2} + 30 \cdot (-0.1)^{3}$$
.

Решение.

$$5 \cdot (10)^{-2} + 30 \cdot (-0.1)^{3} = \frac{5}{10^{2}} + 3 \cdot 10 \cdot (-1)^{3} \cdot \left(\frac{1}{10}\right)^{3} = \frac{5}{100} - \frac{3 \cdot 10}{10^{3}} = \frac{5}{100} - \frac{3}{10^{2}} = \frac{5}{100} - \frac{3}{100} = \frac{5}{100} = 0.02.$$

Ответ: 0,02.

$$3. \ 3^5 \cdot \left(25^2\right)^3 : 75^5.$$

Решение.

$$3^{5} \cdot \left(25^{2}\right)^{3} : 75^{5} = \frac{3^{5} \cdot 25^{6}}{75^{5}} = \frac{3^{5} \cdot 25^{6}}{\left(3 \cdot 25\right)^{5}} = \frac{3^{5} \cdot 25^{6}}{3^{5} \cdot 25^{5}} = 25.$$

Ответ: 25.

4.
$$8^{\frac{1}{2}}: \left(2^{\frac{1}{2}}:9^{\frac{3}{2}}\right)$$
.

Решение.

$$8^{\frac{1}{2}}: \left(2^{\frac{1}{2}}: 9^{\frac{3}{2}}\right) = \left(2^{3}\right)^{\frac{1}{2}}: \frac{2^{\frac{1}{2}}}{9^{\frac{3}{2}}} = 2^{\frac{3}{2}} \cdot \frac{9^{\frac{3}{2}}}{2^{\frac{1}{2}}} = 2^{\frac{3}{2} - \frac{1}{2}} \cdot \left(3^{2}\right)^{\frac{3}{2}} = 2 \cdot 3^{3} = 2 \cdot 27 = 54.$$

Ответ: 54.

5.
$$\frac{\left(\frac{1}{2}\right)^{-2} + 5 \cdot \left(-2\right)^{2} + \left(\frac{2}{3}\right)^{-2}}{2^{-2} + 1}.$$

Решение.

$$\frac{\left(\frac{1}{2}\right)^{-2} + 5 \cdot (-2)^2 + \left(\frac{2}{3}\right)^{-2}}{2^{-2} + 1} = \frac{2^2 + 5 \cdot 2^2 + \left(\frac{3}{2}\right)^2}{\frac{1}{2^2} + 1} = \frac{6 \cdot 2^2 + \frac{9}{4}}{\frac{5}{4}} = \left(\frac{24 \cdot 4}{4} + \frac{9}{4}\right) : \frac{5}{4} = \frac{105}{4} \cdot \frac{4}{5} = \frac{105}{5} = 21.$$

Ответ: 21.

Найти значение следующих выражений:

6.
$$\frac{x^{-13} \cdot x^{-1}}{x^{-16}}$$
 при $x = 6$.

Решение.

$$\frac{x^{-13} \cdot x^{-1}}{x^{-16}} = x^{-13 + (-1) - (-16)} = x^{-13 - 1 + 16} = x^2 \implies 6^2 = 36.$$

Ответ: 36.

7.
$$\frac{7 \cdot (m^5)^6 + 11 \cdot (m^3)^{10}}{(3 \cdot m^{15})^2}.$$

Решение.

$$\frac{7 \cdot \left(m^{5}\right)^{6} + 11 \cdot \left(m^{3}\right)^{10}}{\left(3 \cdot m^{15}\right)^{2}} = \frac{7m^{30} + 11m^{30}}{3^{2} \cdot m^{30}} = \frac{18m^{30}}{9m^{30}} = 2.$$

Ответ: 2.

8.
$$\sqrt[3]{16} \cdot \sqrt[4]{3} \cdot \sqrt[3]{4} \cdot \sqrt[4]{27}$$
.

Решение.

$$\sqrt[3]{16} \cdot \sqrt[4]{3} \cdot \sqrt[3]{4} \cdot \sqrt[4]{27} = \sqrt[3]{16 \cdot 4} \cdot \sqrt[4]{3 \cdot 27} = \sqrt[3]{2^4 \cdot 2^2} \cdot \sqrt[4]{3 \cdot 3^3} = \left(2^6\right)^{\frac{1}{3}} \cdot \left(3^4\right)^{\frac{1}{4}} = 2^2 \cdot 3 = 12.$$

Ответ: 12.

9.
$$\sqrt[3]{\frac{343}{8} \cdot \frac{27}{125}}$$
.

Решение.

$$\sqrt[3]{\frac{343}{8} \cdot \frac{27}{125}} = \sqrt[3]{\frac{7^3}{2^3} \cdot \frac{3^3}{5^3}} = \left(\left(\frac{7 \cdot 3}{2 \cdot 5} \right)^3 \right)^{\frac{1}{3}} = \frac{21}{10} = 2,1.$$

Ответ: 2,1.

$$10. \ \frac{4^{\sqrt{5}} \cdot 11^{\sqrt{5}}}{44^{\sqrt{5}-1}}$$

Решение.

$$\frac{4^{\sqrt{5}} \cdot 11^{\sqrt{5}}}{44^{\sqrt{5}-1}} = \frac{\left(4 \cdot 11\right)^{\sqrt{5}}}{44^{\sqrt{5}-1}} = 44^{\sqrt{5}-(\sqrt{5}-1)} = 44.$$

Ответ: 44.

11.
$$\sqrt[3]{2^6 \cdot 6^{12}}$$
.

$$\sqrt[3]{2^6 \cdot 6^{12}} = \sqrt[6]{2^6 \cdot 6^{12}} = \sqrt[6]{2^6} \cdot \sqrt[6]{6^{12}} = \left(2^6\right)^{\frac{1}{6}} \cdot \left(6^{12}\right)^{\frac{1}{6}} = 2 \cdot 6^2 = 72.$$

Ответ: 72.

12.
$$\sqrt[3]{3^{11}} \cdot \sqrt[3]{3} + \sqrt[7]{\sqrt{13}} \sqrt{13^{13}}$$

Решение.

$$\sqrt[3]{3^{11}} \cdot \sqrt[3]{3} + \sqrt[7]{\sqrt{13}} \cdot \sqrt{13^{13}} \cdot = \sqrt[3]{3^{11}} \cdot 3 + \sqrt[7]{\sqrt{13} \cdot 13^{13}} = \sqrt[6]{3^{12}} + \sqrt[14]{13^{14}} = 3^2 + 13 = 22.$$

Ответ: 22.

13.
$$\left(1,63\sqrt{2\sqrt[5]{16}}+0,37\sqrt[5]{16\sqrt{2}}\right)^{\frac{20}{19}}$$

Решение.

$$\left(1,63\sqrt{2\sqrt[5]{16}} + 0,37\sqrt[5]{16\sqrt{2}}\right)^{\frac{20}{19}} = \left(1,63\sqrt{2\cdot2^{\frac{4}{5}}} + 0,37\sqrt[5]{2^4\cdot2^{\frac{1}{2}}}\right)^{\frac{20}{19}} = \\
= \left(1,63\left(2^{\frac{1+4}{5}}\right)^{\frac{1}{2}} + 0,37\left(2^{\frac{4+1}{2}}\right)^{\frac{20}{5}}\right)^{\frac{20}{19}} = \left(1,63\cdot2^{\frac{9}{10}} + 0,37\cdot2^{\frac{9}{10}}\right)^{\frac{20}{19}} = \\
\left(2^{\frac{9}{10}}\left(1,63+0,37\right)\right)^{\frac{20}{19}} = \left(2^{\frac{9}{10}}\cdot2\right)^{\frac{20}{19}} = \left(2^{\frac{19}{10}}\right)^{\frac{20}{19}} = 2^{-2} = \frac{1}{4} = 0,25$$

Ответ: 0,25.

14. Вычислить
$$\sqrt{\frac{b^3 \cdot \sqrt[5]{b^6}}{64\sqrt[5]{b}}}$$
, если $b = 2$.

Решение.

$$\sqrt{\frac{b^3 \cdot \sqrt[5]{b^6}}{64\sqrt[5]{b}}} = \sqrt{\frac{b^3 \cdot b^{\frac{6}{5}}}{64 \cdot b^{\frac{1}{5}}}} = \sqrt{\frac{b^3 \cdot b^{\frac{6}{5} - \frac{1}{5}}}{64}} = \sqrt{\frac{b^3 \cdot b}{64}} = \frac{b^2}{8}. \Rightarrow \qquad \text{Если} \qquad b = 2, \qquad \text{то}$$

$$\frac{b^2}{8} = \frac{4}{8} = 0,5.$$

Ответ: 0,5.

15. Вычислить
$$\sqrt[3]{a^{\frac{2}{3}} + 2a^{\frac{1}{2}} - a^{\frac{1}{3}} - a^{\frac{1}{6}} + 2}$$
, если $a = 729$.

$$a = 729 = 9^{3} = 3^{6} \Rightarrow$$

$$\sqrt[3]{a^{2/3} + 2a^{1/2} - a^{1/3} - a^{1/6} + 2} = \sqrt[3]{(3^{6})^{2/3} + 2(3^{6})^{1/2} - (3^{6})^{1/3} - (3^{6})^{1/6} + 2} =$$

$$\sqrt[3]{(3^{4}) + 2(3^{3}) - (3^{2}) - (3) + 2} = \sqrt[3]{3^{3}(3+2) - 10} = \sqrt[3]{5(3^{3}-2)} = \sqrt[3]{5 \cdot 25} = \sqrt[3]{5^{3}} = 5.$$

Ответ: 5.

Задачи для самостоятельного решения

- 1. Найдите значение выражения $0.9 \cdot (-10)^2 120$.
- 2. Найдите значение выражения $-0.2 \cdot (-10)^2 + 55$.
- 3. Найдите значение выражения $-0.7 \cdot (-10)^2 + 90$.
- 4. Найдите значение выражения $45 + 0.6 \cdot (-10)^2$.
- 5. Найдите значение выражения $80 + 0.9 \cdot (-10)^3$.
- 6. Найдите значение выражения $80 + 0.4 \cdot (-10)^3$.
- 7. Найдите значение выражения $0.7 \cdot (-10)^3 20$.
- 8. Найдите значение выражения $-90 + 0.7 \cdot (-10)^3$.
- 9. Найдите значение выражения $0.6 \cdot (-10)^3 + 50$.
- 10. Найдите значение выражения $5 \cdot 10^{-1} + 6 \cdot 10^{-2} + 4 \cdot 10^{-4}$.
- 11. Найдите значение выражения $30 \cdot (-0,1)^3 + 7 \cdot (-0,1)^2 3,9$.
- 12. Найдите значение выражения $-0.6 \cdot (-9)^4 + 1.9 \cdot (-9)^2 4$.
- 13. Найдите значение выражения $0.8 \cdot (-7)^4 0.3 \cdot (-7)^2 + 45$.
- 14. Найдите значение выражения $(4,9 \cdot 10^{-3}) \cdot (4 \cdot 10^{-2})$.
- 15. Найдите значение выражения $(6,7 \cdot 10^{-3}) \cdot (5 \cdot 10^{-3})$.
- 16. Найдите значение выражения $(1,3 \cdot 10^{-3}) \cdot (2 \cdot 10^{-2})$.
- 17. Найдите значение выражения $(5^{12})^3:5^{37}$.
- 18. Вычислите: $\frac{7^{-7} \cdot 7^{-8}}{7^{-13}}$.
- 19. Найдите значение выражения $(16 \cdot 10^{-2})^2 \cdot (13 \cdot 10^4)$.
- 20. Найдите значение выражения $(49^6)^3:(7^7)^5$.
- 21. Найдите значение выражения $4^8 \cdot 11^{10} : 44^8$.
- 22. Найдите значение выражения $\frac{2^6 \cdot 3^8}{6^5}$.
- 23. Найдите значение выражения $5^{0.36} \cdot 25^{0.32}$.
- 24. Найдите значение выражения $\frac{49^{5,2}}{7^{8,4}}$.

- 25. Найдите значение выражения $\frac{3^{6.5}}{9^{2.25}}$.
- 26. Найдите значение выражения $\frac{2^{3.5} \cdot 3^{5.5}}{6^{4.5}}$.
- 27. Найдите значение выражения $35^{-4,7} \cdot 7^{5,7} : 5^{-3,7}$.
- 28. Найдите значение выражения $7^{\frac{4}{9}} \cdot 49^{\frac{5}{18}}$.
- 29. Найдите значение выражения $\frac{\left(2^{\frac{3}{5}} \cdot 5^{\frac{2}{3}}\right)^{15}}{10^9}$.
- 30. Найдите значение выражения $0.8^{\frac{1}{7}} \cdot 5^{\frac{2}{7}} \cdot 20^{\frac{6}{7}}$.
- 31. Найдите значение выражения $(7x^3)^2:(7x^6)$.
- 32. Найдите значение выражения $(4a)^3 : a^7 \cdot a^4$.
- 33. Найдите значение выражения $8x^7 \cdot x^{13} : (3x^{10})^2$.
- 34. Найдите значение выражения $((2x^3)^4 (x^2)^6)$: $(3x^{12})$.
- 35. Найдите значение выражения $\frac{(5a^2)^3 \cdot (6b)^2}{(30a^3b)^2}$.
- 36. Найдите значение выражения $\frac{(3x)^3 \cdot x^{-9}}{x^{-10} \cdot 2x^4}$.
- 37. Найдите значение выражения $\frac{a^2b^{-6}}{(4a)^3b^{-2}} \cdot \frac{16}{a^{-1}b^{-4}}$.
- 38. Найдите значение выражения $b^5: b^9 \cdot b^6$. при b = 0.01.
- 39. Найдите значение выражения $(4b)^3 : b^9 \cdot b^5$. при b = 128.
- 40. Найдите значение выражения $(2a^3)^4$: $(2a^{11})$. при a = 11.
- 41. Найдите значение выражения $\frac{x^{-5} \cdot x^8}{x}$ при x = 4.
- 42. Сократите дробь $\frac{(2x)^4 \cdot x^{-10}}{x^{-9} \cdot 5x^3}$.
- 43. Сократите дробь $\frac{(2x)^2 \cdot x^{-9}}{x^{-15} \cdot 5x^8}$.
- 44. Найдите значение выражения $6x(3x^{12})^3:(3x^9)^4$ при x=75.
- 45. Найдите значение выражения $\frac{11a^6b^3 (3a^2b)^3}{4a^6b^6}$ при b = 2.
- 46. Найдите значение выражения $\frac{6n^{\frac{1}{3}}}{n^{\frac{1}{12}} \cdot n^{\frac{1}{4}}}$ при n > 0.

- 47. Найдите значение выражения $\frac{n^{\frac{5}{6}}}{n^{\frac{1}{12}} \cdot n^{\frac{1}{4}}}$ при n = 64.
- 48. Найдите значение выражения $b^{\frac{1}{5}} \cdot (b^{\frac{9}{10}})^2$ при b = 7.
- 49. Найдите значение выражения $a^{0.65} \cdot a^{0.67} \cdot a^{0.68}$ при a = 11.
- 50. Найдите значение выражения $\frac{a^{7,4}}{a^{8,4}}$ при a = 0,4.
- 51. Найдите значение выражения $\frac{a^{3,21} \cdot a^{7,36}}{a^{8,57}}$. при a = 12.
- 52. Найдите значение выражения $\frac{a^{3,33}}{a^{2,11} \cdot a^{2,22}}$ при $a = \frac{2}{7}$.
- 53. Найдите значение выражения $\frac{(9b)^{1.5} \cdot b^{2.7}}{b^{4.2}}$ при b > 0.
- 54. Найдите значение выражения $\frac{b^{3\sqrt{2}+2}}{(b^{\sqrt{2}})^3}$ при b=6.
- 55. Найдите значение выражения $x \cdot 3^{2x+1} \cdot 9^{-x}$ при x = 5.
- 56. Найдите значение выражения $7^{2x-1}:49^x:x$ при $x=\frac{1}{14}$.
- 57. Сократите дробь $\frac{18^{n+3}}{3^{2n+5} \cdot 2^{n-2}}$.
- 58. Упростите выражение: $\frac{5^{n+1}-5^{n-1}}{2\cdot 5^n}$.
- 59. Упростите выражение: $\frac{10 \cdot 2^n}{2^{n+1} + 2^{n-1}}$.
- 60. Сократите дробь $\frac{100^n}{5^{2n-1} \cdot 4^{n-2}}$.
- 61. Сократите дробь $\frac{2^{n+2} \cdot 21^{n+3}}{6^{n+1} \cdot 7^{n+2}}$.

Преобразование числовых иррациональных выражений

- 1. Найдите значение выражения $(3\sqrt{2})^2$.
- 2. Найдите значение выражения $\frac{(2\sqrt{6})^2}{36}$.
- 3. Найдите значение выражения $\frac{(8\sqrt{3})^2}{8}$.

- 4. Найдите значение выражения $\frac{(2\sqrt{7})^2}{14}$.
- 5. Найдите значение выражения $\sqrt{90 \cdot 30 \cdot 3}$.
- 6. Найдите значение выражения $5\sqrt{11} \cdot 2\sqrt{2} \cdot \sqrt{22}$.
- 7. Найдите значение выражения $\sqrt{11 \cdot 2^2} \cdot \sqrt{11 \cdot 3^4}$.
- 8. Найдите значение выражения $\frac{\sqrt{200}}{\sqrt{8}}$.
- 9. Найдите значение выражения $\sqrt{18 \cdot 80} \cdot \sqrt{30}$.
- 10. Найдите значение выражения $(\sqrt{23} + 1)^2$.
- 11. Найдите значение выражения $(\sqrt{85} 1)^2$.
- 12. Найдите значение выражения $3^{\sqrt{5}+10} \cdot 3^{-5-\sqrt{5}}$
- 13. Найдите значение выражения $5^{3\sqrt{7}-1} \cdot 5^{1-\sqrt{7}} : 5^{2\sqrt{7}-1}$.
- 14. Найдите значение выражения $2^{3\sqrt{7}-1} \cdot 8^{1-\sqrt{7}}$.
- 15. Найдите значение выражения $\frac{0.5^{\sqrt{10}-1}}{2^{-\sqrt{10}}}$.
- 16. Найдите значение выражения $\frac{6^{\sqrt{3}} \cdot 7^{\sqrt{3}}}{42^{\sqrt{3}-1}}$.
- 17. Найдите значение выражения $(\sqrt{15} \sqrt{60}) \cdot \sqrt{15}$.
- 18. Найдите значение выражения $(\sqrt{63} \sqrt{28}) \cdot \sqrt{7}$.
- 19. Найдите значение выражения $(\sqrt{54} \sqrt{24}) \cdot \sqrt{6}$.
- 20. Найдите значение выражения $(\sqrt{75} \sqrt{48}) \cdot \sqrt{12}$.
- 21. Найдите значение выражения $\frac{\sqrt{2,8} \cdot \sqrt{4,2}}{\sqrt{0,24}}$.
- 22. Найдите значение выражения $\left(\sqrt{3\frac{6}{7}} \sqrt{1\frac{5}{7}}\right): \sqrt{\frac{3}{28}}$.
- 23. Найдите значение выражения $\left(\frac{2^{\frac{1}{3}} \cdot 2^{\frac{1}{4}}}{\sqrt[12]{2}}\right)^2$.
- 24. Найдите значение выражения $\frac{\sqrt[15]{5} \cdot 5 \cdot \sqrt[10]{5}}{\sqrt[6]{5}}$.
- 25. Найдите значение выражения $\frac{\sqrt[9]{7} \cdot \sqrt[18]{7}}{\sqrt[6]{7}}$.
- 26. Найдите значение выражения $5 \cdot \sqrt[3]{9} \cdot \sqrt[6]{9}$.

- 27. Найдите значение выражения $\sqrt[3]{49} \cdot \sqrt[6]{49}$.
- 28. Найдите значение выражения $\frac{\sqrt[5]{10} \cdot \sqrt[5]{16}}{\sqrt[5]{5}}$.

Преобразование буквенных иррациональных выражений

- 1. Найдите значение выражения $\frac{\sqrt[3]{7a^2}^6}{a^4}$ при $a \neq 0$.
- 2. Найдите значение выражения $\frac{\sqrt[9]{a}\sqrt[18]{a}}{a\sqrt[6]{a}}$ при a = 1,25.
- 3. Найдите значение выражения $\frac{(b^{\sqrt{3}})^{2\sqrt{3}}}{b^4}$ при b = 5.
- 4. Найдите значение выражения $\frac{(4a)^{2,5}}{a^2\sqrt{a}}$ при a > 0.
- 5. Найдите значение выражения $\frac{(\sqrt{3}a)^2 \sqrt[5]{a^3}}{a^{2.6}}$ при a > 0.
- 6. Найдите значение выражения $\frac{\sqrt{m}}{\sqrt[9]{m} \cdot \sqrt[18]{m}}$ при m = 64.
- 7. Найдите значение выражения $\frac{12\sqrt[9]{m} \cdot \sqrt[18]{m}}{\sqrt[6]{m}}$ при m > 0.
- 8. Найдите значение выражения $\frac{\sqrt{81\sqrt[7]{b}}}{\sqrt[14]{b}}$ при b > 0.
- 9. Найдите значение выражения $\frac{\sqrt[9]{\sqrt{m}}}{\sqrt{16\sqrt[9]{m}}}$ при m > 0.
- 10. Найдите значение выражения $\frac{15\sqrt[5]{28}a 7\sqrt[7]{20}a}{2\sqrt[35]{4}a}$ при a > 0.
- 11. Найдите значение выражения $\frac{5\sqrt{x}+2}{\sqrt{x}} \frac{2\sqrt{x}}{x}$ при x > 0.
- 12. Найдите значение выражения $\frac{7\sqrt{x}-5}{\sqrt{x}} + \frac{5\sqrt{x}}{x} + 3x 4$ при x = 3.
- 13. Найдите h(5+x) + h(5-x), если $h(x) = \sqrt[3]{x} + \sqrt[3]{x-10}$.
- 14. Найдите $\frac{g(2-x)}{g(2+x)}$, если $g(x) = \sqrt[3]{x(4-x)}$ при $|x| \neq 2$.

§ 3. Преобразование алгебраических выражений

Основные формулы сокращенного умножения

1.
$$(a+b)^2 = a^2 + 2ab + b^2$$
.

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$
.

3.
$$a^2 - b^2 = (a - b)(a + b)$$
.

4.
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$
.

5.
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$
.

6.
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

7.
$$(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$
.

Следует иметь в виду, что формулы (3-5) могут быть использованы для разложения выражений $a \pm b$ следующим образом:

8.
$$a - b = (\sqrt{a})^2 - (\sqrt{b})^2 = (\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})$$
.

9.
$$a - b = (\sqrt[3]{a})^3 - (\sqrt[3]{b})^3 = (\sqrt[3]{a} - \sqrt[3]{b})(\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}).$$

10.
$$a + b = (\sqrt[3]{a})^3 + (\sqrt[3]{b})^3 = (\sqrt[3]{a} + \sqrt[3]{b})(\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2}).$$

Если x_1 , x_2 — корни уравнения $ax^2 + bx + c = 0$, то справедлива формула $ax^2 + bx + c = a(x - x_1)(x - x_2)$.

Также бывает полезной формула

11.
$$(\sqrt{[f(x)]^2}) = \begin{cases} f(x), & ecnu \\ -f(x), & ecnu \end{cases}$$
 $f(x) \ge 0,$ $f(x) < 0.$

Примеры

1. Найти значение выражения $(5x-9)(5x+9)-25x^2-4x-19$, если x=100.

Решение.

$$(5x-9)(5x+9)-25x^2-4x-19=25x^2-81-25x^2-4x-19=-4x-100 \Rightarrow$$
 если $x=100$, то $-4x-100=-400-100=-500$.

Ответ: -500.

Упростить следующие выражения:

2.
$$(x^{\frac{1}{2}} + 7)^2 - (x^{\frac{1}{2}} - 7)^2$$
.

Первый способ:

$$(x^{\frac{1}{2}} + 7)^{2} - (x^{\frac{1}{2}} - 7)^{2} = \left[(x^{\frac{1}{2}} + 7) - (x^{\frac{1}{2}} - 7) \right] \cdot \left[(x^{\frac{1}{2}} + 7) + (x^{\frac{1}{2}} - 7) \right] = \left[x^{\frac{1}{2}} + 7 - x^{\frac{1}{2}} + 7 \right] \cdot \left[x^{\frac{1}{2}} + 7 + x^{\frac{1}{2}} - 7 \right] = 14 \cdot 2 \cdot x^{\frac{1}{2}} = 28 \cdot x^{\frac{1}{2}}$$

Второй способ:

$$(x^{\frac{1}{2}} + 7)^2 - (x^{\frac{1}{2}} - 7)^2 = \left(x + 2 \cdot 7 \cdot x^{\frac{1}{2}} + 49\right) - \left(x - 2 \cdot 7 \cdot x^{\frac{1}{2}} + 49\right) = x + 14x^{\frac{1}{2}} + 49 - x + 14x^{\frac{1}{2}} - 49 = 28 \cdot x^{\frac{1}{2}}.$$

Otbet: $28 \cdot x^{\frac{1}{2}}$.

3.
$$(x^{\frac{1}{3}} + 2)^3 - 12x^{\frac{1}{3}} - 6x^{\frac{2}{3}}$$
.

Решение.

$$(x^{\frac{1}{3}} + 2)^{3} - 12x^{\frac{1}{3}} - 6x^{\frac{2}{3}} = x + 3x^{\frac{2}{3}} \cdot 2 + 3x^{\frac{1}{3}} \cdot 4 + 2^{3} - 12x^{\frac{1}{3}} - 6x^{\frac{2}{3}} = x + 6x^{\frac{2}{3}} + 12x^{\frac{1}{3}} + 8 - 12x^{\frac{1}{3}} - 6x^{\frac{2}{3}} = x + 8.$$

Otbet: x + 8.

4.
$$\frac{z^3 - 125}{z^2 + 5z + 25} + \frac{z^3 + 125}{z^2 - 5z + 25}$$
.

Решение.

$$\frac{z^3 - 125}{z^2 + 5z + 25} + \frac{z^3 + 125}{z^2 - 5z + 25} = \frac{(z - 5)(z^2 + 5z + 25)}{z^2 + 5z + 25} + \frac{(z + 5)(z^2 - 5z + 25)}{z^2 - 5z + 25} = (z - 5) + (z + 5) = 2z.$$

Ответ: 2z.

5.
$$\frac{a^{\frac{4}{7}}-9}{a^{\frac{2}{7}}+3}+3$$
.

Решение.

$$\frac{a^{4/7} - 9}{a^{2/7} + 3} + 3 = \frac{(a^{2/7} - 3)(a^{2/7} + 3)}{a^{2/7} + 3} + 3 = (a^{2/7} - 3) + 3 = a^{2/7}.$$

Ответ: $a^{\frac{2}{7}}$.

6.
$$\frac{k+8}{k^{\frac{2}{3}}-2k^{\frac{1}{3}}+4}-k^{\frac{1}{3}}$$
.

$$\frac{k+8}{k^{\frac{2}{3}}-2k^{\frac{1}{3}}+4}-k^{\frac{1}{3}}=\frac{(k^{\frac{1}{3}})^3+2^3}{k^{\frac{2}{3}}-2k^{\frac{1}{3}}+4}-k^{\frac{1}{3}}=\frac{(k^{\frac{1}{3}}+2)(k^{\frac{2}{3}}-2k^{\frac{1}{3}}+4)}{k^{\frac{2}{3}}-2k^{\frac{1}{3}}+4}-k^{\frac{1}{3}}=\frac{(k^{\frac{1}{3}}+2)(k^{\frac{2}{3}}-2k^{\frac{1}{3}}+4)}{k^{\frac{2}{3}}-2k^{\frac{1}{3}}+4}-k^{\frac{1}{3}}=\frac{(k^{\frac{1}{3}}+2)(k^{\frac{2}{3}}-2k^{\frac{1}{3}}+4)}{k^{\frac{2}{3}}-2k^{\frac{1}{3}}+4}$$

Ответ: 2.

7.
$$\frac{\sqrt[4]{a} - \sqrt[4]{b}}{\sqrt{a} - \sqrt{b}} - \frac{1}{\sqrt[4]{a} + \sqrt[4]{b}}$$
.

Решение.

$$\frac{\sqrt[4]{a} - \sqrt[4]{b}}{\sqrt[4]{a} - \sqrt{b}} - \frac{1}{\sqrt[4]{a} + \sqrt[4]{b}} = \frac{\sqrt[4]{a} - \sqrt[4]{b}}{(\sqrt[4]{a})^2 - (\sqrt[4]{b})^2} - \frac{1}{\sqrt[4]{a} + \sqrt[4]{b}} = \frac{\sqrt[4]{a} - \sqrt[4]{b}}{(\sqrt[4]{a} - \sqrt[4]{b})(\sqrt[4]{a} + \sqrt[4]{b})} - \frac{1}{\sqrt[4]{a} + \sqrt[4]{b}} = \frac{1}{(\sqrt[4]{a} + \sqrt[4]{b})} - \frac{1}{\sqrt[4]{a} + \sqrt[4]{b}} = 0.$$

Ответ: 0.

8.
$$\frac{a+b}{\sqrt[3]{a}+\sqrt[3]{b}} - (\sqrt[3]{a^2}+b^{\frac{2}{3}})$$
.

Решение.

$$\frac{a+b}{\sqrt[3]{a}+\sqrt[3]{b}} - (\sqrt[3]{a^2}+b^{\frac{2}{3}}) = \frac{(\sqrt[3]{a})^3 + (\sqrt[3]{b})^3}{\sqrt[3]{a}+\sqrt[3]{b}} - (\sqrt[3]{a^2}+b^{\frac{2}{3}}) = \frac{(\sqrt[3]{a}+\sqrt[3]{b})(\sqrt[3]{a^2}-\sqrt[3]{ab}+\sqrt[3]{b^2})}{\sqrt[3]{a}+\sqrt[3]{b}} - (\sqrt[3]{a^2}+\sqrt[3]{b^2}) = \frac{(\sqrt[3]{a}+\sqrt[3]{b})(\sqrt[3]{a^2}-\sqrt[3]{ab}+\sqrt[3]{b^2})}{\sqrt[3]{a}+\sqrt[3]{b}} - (\sqrt[3]{a^2}+\sqrt[3]{b^2}) = \frac{(\sqrt[3]{a}+\sqrt[3]{b})(\sqrt[3]{a^2}+\sqrt[3]{b^2})}{\sqrt[3]{a}+\sqrt[3]{b}} - (\sqrt[3]{a^2}+\sqrt[3]{b^2}) = -\sqrt[3]{ab} + \sqrt[3]{b^2} - \sqrt[3]{a^2}-\sqrt[3]{a^2}-\sqrt[3]{a^2}-\sqrt[3]{ab} + \sqrt[3]{b^2}) = -\sqrt[3]{ab}.$$

Other: $-\sqrt[3]{ab}$.

9.
$$\left(\frac{2x+1}{x+2} - \frac{4x+2}{4-x^2}\right)$$
: $\frac{2x+1}{x-2} + \frac{2}{x+2}$.

Решение.

Пример лучше решать по действиям:

1)
$$\left(\frac{2x+1}{x+2} - \frac{4x+2}{4-x^2}\right) = \frac{2x+1}{x+2} - \frac{4x+2}{(2-x)(2+x)} = \frac{(2x+1)(2-x)}{(x+2)(2-x)} - \frac{4x+2}{(2-x)(2+x)} = \frac{4x-2x^2+2-x-4x-2}{(2-x)(2+x)} = \frac{-2x^2-x}{(2-x)(2+x)} = -\frac{x(2x+1)}{(2-x)(2+x)}.$$
2) $-\frac{x(2x+1)}{(2-x)(2+x)} : \frac{2x+1}{x-2} = \frac{x(2x+1)}{(x-2)(2+x)} \cdot \frac{x-2}{2x+1} = \frac{x}{2+x}.$

3)
$$\frac{x}{2+x} + \frac{2}{x+2} = \frac{x+2}{x+2} = 1$$
.

Ответ: 1.

10.
$$\left(\frac{x^3+y^3}{x+y}-\frac{x^4-y^4}{x^2-y^2}+\frac{2x^2y+2xy^2}{x+y}\right)$$
.

Решение.

1)
$$\frac{x^3 + y^3}{x + y} = \frac{(x + y)(x^2 - xy + y^2)}{x + y} = x^2 - xy + y^2$$
.

2)
$$\frac{x^4 - y^4}{x^2 - y^2} = \frac{(x^2 - y^2)(x^2 + y^2)}{x^2 - y^2} = (x^2 + y^2).$$

3)
$$\frac{2x^2y + 2xy^2}{x + y} = \frac{2xy(x + y)}{x + y} = 2xy.$$

4)
$$(x^2 - xy + y^2) - (x^2 + y^2) + 2xy = x^2 - xy + y^2 - x^2 - y^2 + 2xy = xy$$
.

Ответ: ху.

11.
$$\left(\frac{x^2-4x+4}{2x^2-6x+4}+\frac{3x-2}{2x-2}\right)$$
.

Решение.

1)
$$x^2 - 4x + 4 = x^2 - 2 \cdot 2 \cdot x + 2^2 = (x - 2)^2$$
.

2) Найдем корни уравнения $2x^2 - 6x + 4 = 0$:

$$2x^2 - 6x + 4 = 0,$$

$$\Delta = 6^2 - 4 \cdot 2 \cdot 4 = 36 - 32 = 4,$$

$$x_1 = \frac{6 - \sqrt{4}}{4} = \frac{6 - 2}{4} = 1,$$

$$x_2 = \frac{6+\sqrt{4}}{4} = \frac{6+2}{4} = 2, \Rightarrow 2x^2 - 6x + 4 = 2(x-1)(x-2)$$

3)
$$\frac{x^2 - 4x + 4}{2x^2 - 6x + 4} = \frac{(x - 2)^2}{2(x - 1)(x - 2)} = \frac{(x - 2)}{2(x - 1)}.$$

4)
$$\frac{(x-2)}{2(x-1)} + \frac{3x-2}{2x-2} = \frac{x-2+3x-2}{2(x-1)} = \frac{4x-4}{2(x-1)} = \frac{4(x-1)}{2(x-1)} = 2.$$

Ответ: 2.

Задачи для самостоятельного решения

Возведите в квадрат и куб:

1.
$$(4a+3b)^2$$
.

- $2. (2x-7y)^2$.
- 3. $(5b^3 4b^4)^2$.
- 4. $(3y^2 + 5z^3)^3$.
- $5.\left(4b-\frac{1}{3}c^2\right)^3.$

Разложите многочлены на множители:

- 6. $4x^2 y^2$.
- 7. $16a^2 b^2$.
- 8. $x^4 9y^{12}$
- 9. $(x+1)^2-16$.
- 10. $25-(c-2)^2$.
- 11. $(y-2)^2 (z+1)^2$.
- 12. $(2a-b)^2 (a+b)^2$
- 13. $27-a^3$.
- 14. $64 + b^3$.
- 15. $64 + x^3y^3$.
- 16. $27x^3 8y^3$.
- 17. x y.
- 18. 4x 9y.
- 19. x + y.
- 20. 8a + 27b.
- 21. Найдите значение выражения $\frac{9axy (-7xya)}{4yax}$.
- 22. Найдите значение выражения (9axy (-6xya)): (3yax).
- 23. Найдите значение выражения (5axy (-3xya)) : (4yax).
- 24. Разложите на множители: $x^2y + 1 x^2 y$.
- 25. Сократите дробь $\frac{5x^2-3x-2}{5x^2+2x}$.
- 26. Сократите дробь $\frac{x^2 5x + 6}{x^2 3x}$.
- 27. Сократите дробь $\frac{x^3 + 2x^2 9x 18}{(x-3)(x+2)}.$

28. Сократите дробь
$$\frac{ab-2b-6+3a}{a^2-4}$$
.

- 29. Найдите значение выражения $\frac{(11a)^2 11a}{11a^2 a}$.
- 30. Найдите значение выражения $(2x-5)(2x+5)-4x^2$.
- 31. Найдите значение выражения $(7x-13)(7x+13)-49x^2+6x+22$ при x=80.
 - 32. Найдите значение выражения $(4x^2 + y^2 (2x y)^2)$: (2xy).
 - 33. Найдите значение выражения $\frac{(3x+2y)^2-9x^2-4y^2}{6xy}.$
 - 34. Найдите значение выражения $\frac{(4x-3y)^2-(4x+3y)^2}{4xy}.$
 - 35. Найдите значение выражения $\frac{9x^2-4}{3x+2}-3x$.
- 36. Найдите значение выражения $(a^3 16a) \cdot \left(\frac{1}{a+4} \frac{1}{a-4}\right)$ при a = -45.
 - 37. Найдите значение выражения $(4a^2 9) \cdot \left(\frac{1}{2a 3} \frac{1}{2a + 3}\right)$.
- 38. Найдите значение выражения $a(36a^2-25)\cdot\left(\frac{1}{6a+5}-\frac{1}{6a-5}\right)$ при a=36,7.
- 39. Найдите значение выражения $(9b^2-49)\cdot\left(\frac{1}{3b-7}-\frac{1}{3b+7}\right)+b-13$ при b=345.
- 40. Найдите значение выражения $\frac{7a}{6c} \frac{49a^2 + 36c^2}{42ac} + \frac{6c 49a}{7a}$ при a = 71, c = 87.
 - 41. Упростите выражение $\frac{3x^2+4x}{x^2-2x} \frac{2x-7}{x} \frac{x+8}{x-2}$.
 - 42. Упростите выражение: $\frac{6}{a-1} \frac{10}{(a-1)^2} : \frac{10}{a^2-1} \frac{2a+2}{a-1}$.
 - 43. Упростите выражение: $\frac{m}{m^2-2m+1}-\frac{m+2}{m^2+m-2}$.

44. Найдите
$$\frac{a}{b}$$
, если $\frac{2a+5b}{5a+2b} = 1$.

45. Найдите
$$\frac{a+9b+16}{a+3b+8}$$
, если $\frac{a}{b}=3$.

46. Найдите значение выражения
$$39a - 15b + 25$$
, если $\frac{3a - 6b + 4}{6a - 3b + 4} = 7$.

47. Найдите
$$61a - 11b + 50$$
, если $\frac{2a - 7b + 5}{7a - 2b + 5} = 9$.

- 48. Найдите значение выражения 2x + y + 6z, если 4x + y = 5, а 12z + y = 7.
 - 49. Найдите значение выражения 3p(a) 6a + 7, если p(a) = 2a 3.
 - 50. Найдите значение выражения q(b-2) q(b+2), если q(b) = 3b.
 - 51. Найдите p(x-7) + p(13-x), если p(x) = 2x + 1.
 - 52. Найдите p(x) + p(6-x), если $p(x) = \frac{x(6-x)}{x-3}$ при $x \neq 3$.
 - 53. Найдите 2p(x-7) p(2x), если p(x) = x-3.
- 54. Найдите значение выражения 5(p(2x) 2p(x+5)), если p(x) = x 10.
 - 55. Найдите значение выражения $\frac{g(x-9)}{g(x-11)}$, если $g(x) = 8^x$.
 - 56. Найдите значение выражения $\frac{p(a)}{p(10-a)}$, если $p(a) = \frac{a(10-a)}{a-5}$.
 - 57. Найдите $\frac{p(b)}{p(\frac{1}{b})}$, если $p(b) = \left(b + \frac{3}{b}\right) \left(3b + \frac{1}{b}\right)$. при $b \neq 0$.

Преобразование различных выражений

- 1. Найдите значение выражения $\sqrt{65^2 56^2}$.
- 2. Найдите значение выражения $(\sqrt{13} \sqrt{7})(\sqrt{13} + \sqrt{7})$
- 3. Упростите выражение $\frac{\sqrt{\sqrt{10}-2}\cdot\sqrt{\sqrt{10}+2}}{\sqrt{24}}$.
- 4. Найдите значение выражения $\frac{\left(\sqrt{13} + \sqrt{7}\right)^2}{10 + \sqrt{91}}$.
- 5. Найдите значение выражения $x + \sqrt{x^2 4x + 4}$ при $x \le 2$.

6. Найдите значение выражения $\sqrt{(a-6)^2} + \sqrt{(a-10)^2}$ при $6 \le a \le 10$. Упростите выражения:

$$7.\left(\frac{x-y}{\sqrt{x}+\sqrt{y}}-\frac{x^3+y^3}{x+y}\right).$$

8.
$$\frac{x\sqrt{x} + y\sqrt{y}}{\sqrt{x} + \sqrt{y}} : (x - y) + \frac{\sqrt{y}}{\sqrt{x} + \sqrt{y}}.$$

$$9. \left(\frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} - \sqrt{y}} - \frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}} \right) \cdot \left(\frac{1}{\sqrt{y}} - \frac{1}{\sqrt{x}} \right).$$

$$10. \left(\frac{a\sqrt{a} + b\sqrt{b}}{\sqrt{a} + \sqrt{b}} - \sqrt{ab} \right) \cdot \left(\frac{\sqrt{a} + \sqrt{b}}{a - b} \right)^{2}.$$

11.
$$\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}} + \frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}.$$

12.
$$\left(\frac{\sqrt{m-a}}{\sqrt{m+a} + \sqrt{m-a}} + \frac{m-a}{\sqrt{m^2 - a^2} - m + a}\right) : \sqrt{\frac{m^2}{a^2} - 1}, \ a > 0.$$

13.
$$\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}:\frac{1}{\sqrt{x}-x^2}+x$$
.

14.
$$a \cdot \left(\frac{\sqrt{a} + \sqrt{b}}{2b\sqrt{a}}\right)^{-1} + b \cdot \left(\frac{\sqrt{a} + \sqrt{b}}{2a\sqrt{b}}\right)^{-1}$$
.

15.
$$\left(a^2\sqrt{b}\right)^{-\frac{1}{2}}\cdot\left(\sqrt{ab}-\frac{ab}{a+\sqrt{ab}}\right):\frac{\sqrt[4]{ab}-\sqrt{b}}{a-b}.$$

16.
$$\left(\frac{x+\sqrt{a}}{\sqrt[3]{x}+\sqrt[6]{a}} - \frac{x-\sqrt{a}}{\sqrt[3]{x}-\sqrt[6]{a}} + \frac{\sqrt[3]{xa^2}-\sqrt[3]{x^4\sqrt{a}}}{x-\sqrt{a}}\right)^3.$$

Глава 2. Уравнения и системы уравнений

§ 1. Линейные, квадратные и рациональные уравнения

Уравнение вида kx+b=0, где $k,b\in R$ и $k\neq 0$, называется *линейным*. Здесь x — независимая величина, подлежащая определению. Решим линейное уравнение kx+b=0:

$$kx + b = 0 \Rightarrow kx = -b \Rightarrow x = -\frac{b}{k}$$
.

Уравнение вида $ax^2 + bx + c = 0$, где $a,b,c \in R$ и $a \neq 0$, называется *квадратным*. Здесь x — неизвестная величина, подлежащая определению.

Для решения квадратного уравнения используют следующий алгоритм:

$$ax^2 + bx + c = 0 \Longrightarrow$$
 Найдем величину $\Delta = b^2 - 4ac \Longrightarrow$

1. Если $\Delta > 0$, то уравнение имеет два решения: $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ и $-b + \sqrt{\Delta}$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a}.$$

2. Если
$$\Delta = 0$$
, то $x_1 = x_2 = -\frac{b}{2a}$.

3. Если $\Delta < 0$, то уравнение не имеет решений.

Если b или c равны нулю, то квадратное уравнение можно решить более простым способом:

1. Пусть
$$c = 0, b \neq 0 \Rightarrow ax^2 + bx = 0 \Rightarrow x(ax+b) = 0 \Rightarrow \begin{bmatrix} x = 0, \\ x = -\frac{b}{a}. \end{bmatrix}$$

2. Пусть
$$b = 0, c \neq 0 \Rightarrow ax^2 + c = 0 \Rightarrow x^2 = -\frac{c}{a} \Rightarrow$$

$$\pi p \mathbf{u} - \frac{c}{a} > 0 \Rightarrow x = \pm \sqrt{-\frac{c}{a}},$$

при $-\frac{c}{a}$ < 0 уравнение не имеет решений.

Квадратное уравнение вида $x^2 + px + q = 0 \Rightarrow$ называется *приведенным*. Кроме основного алгоритма, для решения уравнения можно применить формулы Виета.

Если x_1 и x_2 – корни уравнения, то выполняются соотношения

$$\begin{cases} x_1 + x_2 = -p, \\ x_1 \cdot x_2 = q. \end{cases}$$

Уравнение, содержащее выражения с искомой величиной x в знаменателе дроби, называется *рациональным*.

При решении таких уравнений нужно учитывать, что выражение в знаменателе дроби не может быть равным нулю. Иначе – говорят, что необходимо найти область допустимых значений уравнения (ОДЗ).

Также для решения рациональных уравнений часто используется метод замены переменной.

Примеры

Решить уравнения:

1.
$$1+8(10-x)=9$$
.

Решение.

$$1 + 8(10 - x) = 9 \Rightarrow 1 + 80 - 8x = 9 \Rightarrow -8x + 72 = 0 \Rightarrow x = \frac{72}{8} = 9$$
.

Otbet: x = 9.

2.
$$\frac{1}{9x+2} = \frac{1}{8x-4}$$
.

Решение.

ОДЗ:
$$\begin{cases} 9x + 2 \neq 0, \\ 8x - 4 \neq 0, \end{cases} \Rightarrow \begin{cases} x \neq -\frac{2}{9}, \\ x \neq \frac{1}{2}. \end{cases}$$

$$\frac{1}{9x+2} = \frac{1}{8x-4} \Rightarrow 8x-4 = 9x+2 \Rightarrow 9x+2-8x+4 = 0 \Rightarrow x+6 = 0 \Rightarrow$$
$$\Rightarrow x = -6.$$

Ответ: x = -6.

3.
$$\frac{x+4}{5x+9} = \frac{x+4}{4x-5}$$
.

ОДЗ:
$$\begin{cases} 5x + 9 \neq 0, \\ 4x - 5 \neq 0, \end{cases} \Rightarrow \begin{cases} x \neq -\frac{9}{5}, \\ x \neq \frac{5}{4}. \end{cases}$$
$$\frac{x + 4}{5x + 9} = \frac{x + 4}{4x - 5} \Rightarrow (x + 4) \left(\frac{1}{5x + 9} - \frac{1}{4x - 5} \right) = 0 \Rightarrow (x + 4) = 0,$$
или
$$\frac{1}{5x + 9} = \frac{1}{4x - 5} \Rightarrow (x + 4) \left(\frac{1}{5x + 9} - \frac{1}{4x - 5} \right) = 0 \Rightarrow (x + 4) = 0 \Rightarrow$$

$$x = -4.$$

$$\frac{1}{5x + 9} = \frac{1}{4x - 5} \Rightarrow (4x - 5) = (5x + 9) \Rightarrow x = -14.$$

Otbet: $x_1 = -14$; $x_2 = -4$.

4.
$$(x+11)^2 = 44x$$
.

Решение.

$$(x+11)^2 = 44x \Rightarrow x^2 + 22x + 121 = 44x \Rightarrow x^2 - 22x + 121 = 0 \Rightarrow$$

 $(x+11)^2 = 0 \Rightarrow x = 11.$

Ответ: x = 11.

5.
$$(x-2)(x^2+2x+1) = 4(x+1)$$
.

Решение.

$$(x-2)(x^2+2x+1) = 4(x+1) \Rightarrow (x-2)(x+1)^2 - 4(x+1) = 0 \Rightarrow$$

 $\Rightarrow (x+1)[(x-2)(x+1)-4] = 0 \Rightarrow$

1)
$$x+1=0 \Rightarrow x=-1$$
 или

2)
$$(x-2)(x+1)-4=0 \Rightarrow x^2-x-2-4=0 \Rightarrow$$

$$\Rightarrow x^2 - x - 6 = 0 \Rightarrow \Delta = (-1)^2 - 4 \cdot 1 \cdot (-6) = 25 > 0 \Rightarrow$$

$$\Rightarrow x_1 = \frac{1 - \sqrt{25}}{2} = -2, \ x_2 = \frac{1 + \sqrt{25}}{2} = 3.$$

Otbet: $x_1 = -2, x_2 = -1, x_3 = 3.$

6.
$$2 \cdot x - 30 - x^2 = 2x^2 - 20x + 5$$
.

$$2 \cdot x - 30 - x^{2} = 2x^{2} - 20x + 5 \Rightarrow 3x^{2} - 22x + 35 = 0 \Rightarrow 3x^{2} - 22x + 35 = 0 \Rightarrow$$

$$\Delta = (-22)^{2} - 4 \cdot 3 \cdot 35 = 484 - 12 \cdot 35 = 64 > 0 \Rightarrow$$

$$x_{1} = \frac{22 - \sqrt{64}}{6} = \frac{14}{6} = \frac{7}{3},$$

$$x_2 = \frac{22 + \sqrt{64}}{6} = \frac{30}{6} = 5.$$

Otbet:
$$x_1 = \frac{7}{3}$$
; $x_2 = 5$.

7.
$$2 \cdot x^4 + 5x^2 - 7 = 0$$
.

Решение.

Это уравнение называется *биквадратным*. В этом случаем делается замена $x^2 = t \ge 0 \Rightarrow 2 \cdot x^4 + 5x^2 - 7 = 0 \Rightarrow 2t^2 + 5t - 7 = 0 \Rightarrow$

$$\Delta = (25) - 4 \cdot 2 \cdot (-7) = 25 + 56 = 81 > 0 \Longrightarrow$$

$$t_1 = \frac{-5 - \sqrt{81}}{4} = -\frac{14}{4} -$$
 посторонний корень, так как $t \ge 0 \Longrightarrow$

$$t_2 = \frac{-5 + \sqrt{81}}{4} = \frac{4}{4} = 1 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1.$$

Otbet: $x = \pm 1$.

8.
$$\frac{x^2-3}{x} + \frac{6x}{x^2-3} - 5 = 0$$
.

Решение.

$$\frac{x^2-3}{x} + \frac{6x}{x^2-3} - 5 = 0.$$

Замена:
$$\frac{x^2-3}{x} = t \Rightarrow t + \frac{6}{t} - 5 = 0 \Rightarrow$$

$$t^2 - 5t + 6 = 0 \Rightarrow t_1 = 2, \quad t_2 = 3 \Rightarrow$$

1)
$$\frac{x^2 - 3}{x} = 2 \Rightarrow x^2 - 3 = 2x \Rightarrow x^2 - 2x - 3 = 0 \Rightarrow x_1 = -1, \quad x_2 = 3.$$

$$\frac{x^2 - 3}{x} = 3 \Rightarrow x^2 - 3 = 3x \Rightarrow x^2 - 3x - 3 = 0 \Rightarrow$$

2)
$$\Delta = (-3)^2 - 4 \cdot 1 \cdot (-3) = 21 \Rightarrow x_3 = \frac{3 - \sqrt{21}}{3}; \quad x_4 = \frac{3 + \sqrt{21}}{3};$$

Other:
$$x_{1/2} = \frac{3 \pm \sqrt{21}}{3}$$
; $x_3 = -1$; $x_4 = 3$.

9.
$$\frac{9}{(x+1)^2} + \frac{(x+1)^2}{16} = 3 \cdot \left(\frac{3}{x+1} - \frac{x+1}{4}\right) - \frac{1}{2}$$
, найти корни из отрезка [0; 2].

$$\frac{9}{(x+1)^2} + \frac{(x+1)^2}{16} = 3 \cdot \left(\frac{3}{x+1} - \frac{x+1}{4}\right) - \frac{1}{2}, \Rightarrow$$

Сделаем замену:

$$\frac{3}{(x+1)} - \frac{(x+1)}{4} = t \Rightarrow t^2 = \frac{9}{(x+1)^2} - \frac{3}{2} + \frac{(x+1)^2}{16} \Rightarrow$$

$$\frac{9}{(x+1)^2} + \frac{(x+1)^2}{16} = t^2 + \frac{3}{2} \Rightarrow t^2 + \frac{3}{2} = 3t - \frac{1}{2} \Rightarrow t^2 - 3t + 2 = 0 \Rightarrow$$

$$t_1 = 1, \quad t_2 = 2 \Longrightarrow$$

1)
$$\frac{3}{(x+1)} - \frac{(x+1)}{4} = 1 \Rightarrow 12 - (x+1)^2 = 4(x+1) \Rightarrow$$

$$(x+1)^2 + 4(x+1) - 12 = 0 \Longrightarrow$$

Пусть $x+1=y \Rightarrow y^2+4y-12=0 \Rightarrow y_1=-6$, $y_2=2 \Rightarrow x_1=-7$, $x_2=1$.

 $x_1 \notin [0; 2], \quad x_2 \in [0; 2];$

2)
$$\frac{3}{(x+1)} - \frac{(x+1)}{4} = 2 \Rightarrow 12 - (x+1)^2 = 8(x+1) \Rightarrow$$

$$(x+1)^2 + 8(x+1) - 12 = 0 \Rightarrow$$

Пусть
$$x+1=y \Rightarrow y^2+8y-12=0 \Rightarrow \Delta=8^2-4\cdot1\cdot(-12)=64+48=112 \Rightarrow$$

$$y_1 = \frac{-8 - \sqrt{112}}{2} = \frac{-8 - 4\sqrt{7}}{2} = -4 - 2\sqrt{7}.$$

$$y_2 = \frac{-8 + \sqrt{112}}{2} = \frac{-8 + 4\sqrt{7}}{2} = -4 + 2\sqrt{7}.$$

$$\Rightarrow x_3 = -5 - 2\sqrt{7} \notin [0; 2], \quad x_4 = -5 + 2\sqrt{7}.$$

Так как $2\sqrt{7} > 5$, потому что $(2\sqrt{7})^2 > 5^2$, то $\Rightarrow x_4 = -5 + 2\sqrt{7} > 0$.

Ho $-5+2\sqrt{7} < 2$, tak kak $(2\sqrt{7}) < 7$. $\Rightarrow x_4 \in [0; 2]$.

Otbet:
$$x_1 = 1$$
, $x_2 = -5 + 2\sqrt{7}$.

10. Найти
$$\frac{x_2}{1+x_1} + \frac{x_1}{1+x_2}$$
, где x_1 , x_2 – корни уравнения $-x^2 + 5x + 8 = 0$.

Решение.

 $-x^2 + 5x + 8 = 0 \Rightarrow x^2 - 5x - 8 = 0$ — приведенное квадратное уравнение. По формулам Виета имеем:

$$\begin{cases} x_1 + x_2 = 5, \\ x_1 \cdot x_2 = -8, \end{cases}$$
 где x_1, x_2 — корни этого уравнения. \Rightarrow

$$\frac{x_2}{1+x_1} + \frac{x_1}{1+x_2} = \frac{x_2 + x_2^2 + x_1 + x_1^2}{(1+x_1) \cdot (1+x_2)} = \frac{(x_1 + x_2) + (x_1^2 + x_2^2)}{1+x_1 + x_2 + x_1 x_2} = \frac{5 + (x_1^2 + x_2^2 + 2x_1 x_2 - 2x_1 x_2)}{1+5-8} = \frac{5 + (x_1 + x_2)^2 - 2x_1 x_2}{-2} = \frac{5 + 5^2 - 2 \cdot (-8)}{-2} = \frac{-46}{2} = -23.$$

Ответ: -23.

Задачи для самостоятельного решения

Линейные уравнения

Решите уравнения:

1.
$$4x + 7 = 0$$
.

$$2. 2x + 2 = -3.$$

$$3.\ 10x + 9 = 7x.$$

4.
$$10(x-9)=7$$
.

$$5. -5x = -6x + 8.$$

6.
$$7x - 13 = -13 + 7x$$
.

7.
$$0 \cdot x = 28$$
.

8.
$$\left(\frac{1}{2} - x\right)^2 - \left(\frac{1}{2} + x\right)^2 = -2x$$
.

9.
$$\frac{-3x+4x^2}{5} = (0.8x-0.6)x.$$

10.
$$5 - 3x = 7 - 3x$$
.

11.
$$1\frac{3}{5} \cdot x = 1\frac{1}{2}$$
.

12.
$$x - 34 = x + 54$$
.

13.
$$2(3x-1)-3(2x+1)=6$$
.

14.
$$x - \frac{x}{12} = \frac{55}{12}$$
.

15.
$$x+7-\frac{x}{3}=3$$
.

16.
$$3 - \frac{x}{7} = \frac{x}{3}$$
.

17.
$$13 + \frac{x}{4} = x + 1$$
.

18.
$$\frac{x}{12} + \frac{x}{8} + x = -\frac{29}{6}$$
.

19.
$$\frac{x-6}{2} - \frac{x}{3} = 3$$
.

20.
$$\frac{x+5}{5} - x = 2$$
.

21.
$$x-11=\frac{x+7}{7}$$
.

22.
$$(-5x+3)(-x+6)=0$$
.

23.
$$-9(8-9x)=4x+5$$
.

24.
$$9-2(-4x+7)=7$$
.

25.
$$2-3(2x+2)=5-4x$$
.

26.
$$5-2x=11-7(x+2)$$
.

27.
$$3x+5+(x+5)=(1-x)+4$$
.

$$28. -x-2+3(x-3)=3(4-x)-3.$$

29.
$$2x^2 - x - 1 = x^2 - 5x - (-1 - x^2)$$

30.
$$7(3x-6)+5(x-3)-2(x-7)=5$$
.

31.
$$(x-3)(x+4)-2(3x-2)=(x-4)^2$$
.

32.
$$(x+1)^3 - (x-1)^3 = 6(x^2 + x + 1)$$
.

Квадратные уравнения

- 1. Решите уравнение $x^2 x 6 = 0$.
- 2. Найдите корни уравнения $x^2 7x 18 = 0$.
- 3. Решите уравнение $x^2 + 8x + 7 = 0$.
- 4. Решите уравнение $x^2 9x + 8 = 0$.
- 5. Решите уравнение $2x^2 3x + 1 = 0$.
- 6. Решите уравнение $2x^2 3x + 4 = 0$.
- 7. Решите уравнение $9x^2 + 6x + 1 = 0$.
- 8. Решите уравнение $x^2 10x + 24 = 0$.
- 9. Решите уравнение $x^2 + 3x = 4$.
- 10. Решите уравнение $x^2 = 2x + 8$.
- 11. Найдите корни уравнения $x^2 + 4 = 5x$.
- 12. Решите уравнение $4x^2 + 7 = 7 + 24x$.
- 13. Решите уравнение $(x + 10)^2 = (5 x)^2$.
- 14. Решите уравнение $(x + 2)^2 = (x 4)^2$.

- 15. Решите уравнение $-2x^2 + x + 7 = -x^2 + 5x + (-2 x^2)$.
- 16. Решите уравнение $(x-4)^2 + (x+9)^2 = 2x^2$.
- 17. Найдите корни уравнения $25x^2 1 = 0$.
- 18. Найдите корни уравнения $2x^2 10x = 0$.
- 19. Решите уравнение $7x^4 + x^2 8 = 0$.
- 20. Решите уравнение $x^4 + 7x^2 + 6 = 0$.
- 21. Решите уравнение $2x^4 + 5x^2 7 = 0$.
- 22. Решите уравнение $x^4 5x^2 + 6 = 0$.

Теорема Виета

Составить квадратное уравнение по его корням:

- a) $x_1 = 2$, $x_2 = 8$;
- 6) $x_1 = 3$, $x_2 = 5$;
- B) $x_1 = \frac{1}{2}$, $x_2 = -\frac{1}{4}$.
- 1. Уравнение $x^2 + px + q = 0$ имеет корни -6; 4. Найдите q.
- 2. Уравнение $x^2 + px + q = 0$ имеет корни -5; 7. Найдите q.
- 3. Квадратный трехчлен разложен на множители: $x^2 + 6x 27 = (x + 9)(x a)$. Найдите a.

Рациональные уравнения

Решите уравнения:

1.
$$\frac{9}{x-2} = \frac{9}{2}$$
.

$$2. \ \frac{x-4}{x-6} = 2.$$

$$3. \ \frac{x-12}{x-4} = \frac{3}{5}.$$

4.
$$\frac{3}{x-19} = \frac{19}{x-3}$$
.

5.
$$x - \frac{6}{x} = -1$$
.

6.
$$\frac{5(x-2)}{x+2} - \frac{2(x-3)}{x+3} = 3.$$

7.
$$\frac{x^2}{x+5} = \frac{25}{x+5}$$
.

8.
$$\frac{x^2-1}{x} = x^2 - \frac{1}{x}$$
.

9.
$$\frac{3(9x-3)}{9x-6} = 2 + \frac{3x+1}{3x-2}$$
.

10.
$$\frac{3-7x}{2x+4} = \frac{1,5-3,5x}{x+2}$$
.

11.
$$\frac{x^2-3}{x} + \frac{6x}{x^2-3} - 5 = 0.$$

12.
$$\frac{x^2+1}{x} + \frac{x}{x^2+1} = 2$$
.

13.
$$x^2 + x + \frac{18}{x^2 + x + 1} = 10$$
.

14.
$$\frac{10}{x^2-4x+8}-x^2+4x=5$$
.

15.
$$\frac{1}{x(x+2)} - \frac{1}{(x+1)^2} = \frac{1}{12}$$
.

16.
$$\frac{(x-2)^2}{2} + \frac{18}{(x-2)^2} = 7\left(\frac{x-2}{2} - \frac{3}{x-2}\right) + 10.$$

17.
$$\frac{(x+3)^2}{5} + \frac{20}{(x+3)^2} = 8\left(\frac{x+3}{5} - \frac{2}{x+3}\right) + 1.$$

§ 2. Иррациональные уравнения

Уравнение, содержащее выражения с искомой величиной x под радикалом, будем называть *иррациональным*.

При решении таких уравнений нужно учитывать, что выражение под корнем должно быть неотрицательным. Однако в уравнениях вида $\sqrt{f(x)} = g(x)$ в качестве ОДЗ нужно неотрицательной положить только правую часть, т.е. $g(x) \ge 0$.

Примеры

Решить уравнения:

1.
$$(x^2-4)\sqrt{x+1}=0$$
.

Решение.

$$(x^2-4)\sqrt{x+1}=0 \Rightarrow OД3: x+1 \ge 0 \Rightarrow x \ge -1.$$

1)
$$x^2 - 4 = 0 \Rightarrow x = \pm 2$$
, но $x = -2 \notin OД3$.

2)
$$\sqrt{x+1} = 0 \Rightarrow x+1=0 \Rightarrow x=-1$$
.

Other: x = -2, x = -1.

2.
$$x + 5\sqrt{x} - 6 = 0$$
.

Решение.

 $x+5\sqrt{x}-6=0$. Данное уравнение лучше решать заменой $\sqrt{x}=t\geq 0 \Rightarrow t^2+5t-6=0 \Rightarrow t_1=-6, \ t_2=1$. Так как $t_1=-6<0 \Rightarrow$ решением уравнения является $t=1 \Rightarrow \sqrt{x}=1 \Rightarrow x=1$.

Other: x = 1.

3.
$$\sqrt{0.5 \cdot (x^2 - 9x + 22)} + 5 = x$$
.

Решение.

$$\sqrt{0,5\cdot(x^2-9x+22)}+5=x$$
. Это уравнение имеет вид $\sqrt{0,5\cdot(x^2-9x+22)}=x-5\Rightarrow \mathrm{O}Д3:\ x-5\geq 0\Rightarrow x>5.\Rightarrow$ $\frac{1}{2}(x^2-9x+22)=(x-5)^2\Rightarrow x^2-9x+22=2x^2-20x+50\Rightarrow x^2-11x+28=0\Rightarrow x_1=4,\quad x_2=7.$ Но $x_1=4<5\Rightarrow x=7.$

Otbet: x = 7.

4.
$$2\sqrt{(x+2)} + 3\sqrt{x^2 - 3x - 10} = 0$$
.

 $2\sqrt{(x+2)} + 3\sqrt{x^2 - 3x - 10} = 0$. Так как оба слагаемых не могут быть отрицательными, то их сумма равна нулю, если только оба слагаемых равны нулю:

$$\begin{cases} x+2=0, \\ x^2-3x-10=0 \end{cases} \Rightarrow \begin{cases} x=-2 \\ x=-2 \Rightarrow x=-2. \\ x=5 \end{cases}$$

Ответ: x = -2.

5.
$$\sqrt{3x-5} - \sqrt{4-x} = 1$$
.

Решение.

$$\sqrt{3x-5} - \sqrt{4-x} = 1 \Rightarrow \text{OД3}$$
: $\begin{cases} 3x-5 \ge 0, \\ 4-x \ge 0 \end{cases} \Rightarrow \begin{cases} x \ge \frac{5}{3} \Rightarrow x \in \left[\frac{5}{3}; 4\right]. \end{cases}$

Перенесем $\sqrt{4-x}$ в правую сторону, чтобы обе части были неотрицательны:

$$\sqrt{3x-5} = 1 + \sqrt{4-x} \Rightarrow 3x-5 = 1 + 2\sqrt{4-x} + 4 - x \Rightarrow 2\sqrt{4-x} = 4x - 10 \Rightarrow$$

$$\sqrt{4-x} \Rightarrow 2x-5 \Rightarrow \text{ ОД3: } 2x-5 \ge 0, \quad x \ge \frac{5}{2}.$$

$$\Rightarrow 4-x = (2x-5)^2 \Rightarrow 4-x = 4x^2 - 20x + 25 \Rightarrow 4x^2 - 19x + 21 = 0 \Rightarrow$$

$$\Delta = 19^2 - 4 \cdot 4 \cdot 21 = 361 - 336 = 25 \Rightarrow$$

$$x_1 = \frac{19-\sqrt{25}}{8} = \frac{16}{8} = 2, \quad x_2 = \frac{19+\sqrt{25}}{8} = \frac{24}{8} = 3.$$

Следует обратить внимание, что $x_1 = 2 \in \left[\frac{5}{3}; 4\right]$, но не удовлетворяет

неравенству $x \ge \frac{5}{2}$. Поэтому $x_1 = 2$ – посторонний корень.

Otbet: x = 3.

6.
$$\sqrt{x+1} - \sqrt{2x-5} = \sqrt{x-2}$$
.

Решение.

$$\sqrt{x+1} - \sqrt{2x-5} = \sqrt{x-2} \Rightarrow \text{ ОД3: } \begin{cases} x+1 \ge 0, \\ 2x-5 \ge 0, \Rightarrow \begin{cases} x \ge -1, \\ x \ge \frac{5}{2} \Rightarrow x \ge \frac{5}{2}. \end{cases}$$

Перенесем слагаемое $\sqrt{2x-5}$ в правую часть, чтобы обе части уравнения были неотрицательными:

$$\sqrt{x+1} = \sqrt{x-2} + \sqrt{2x-5} \Rightarrow x+1 = x-2+2\sqrt{(x-2)(2x-5)} + 2x-5 \Rightarrow$$

$$\Rightarrow 2\sqrt{2x^2-9x+10} = -2x+8 \Rightarrow \sqrt{2x^2-9x+10} = 4-x \Rightarrow \text{ ОД3: } x \le 4 \Rightarrow$$

$$2x^2-9x+10 = 16-8x+x^2 \Rightarrow x^2-x-6 = 0 \Rightarrow x_1 = -2 < \frac{5}{2}, \quad x_2 = 3 \in \left[\frac{5}{2}; 4\right].$$

OTBET: x = 3.

7.
$$\sqrt{x-\sqrt{x-2}} + \sqrt{x+\sqrt{x-2}} = 3$$
.

Решение.

 $\sqrt{x-\sqrt{x-2}}+\sqrt{x+\sqrt{x-2}}=3 \Rightarrow \text{ OД3}\colon \ x-2\geq 0 \Rightarrow x\geq 2.$ Следует заметить, что при $x\geq 2$ выражения $x-\sqrt{x-2}>0$ и $x+\sqrt{x-2}>0$. Возведем обе части уравнения в квадрат:

$$x - \sqrt{x - 2} + 2\sqrt{(x - \sqrt{x - 2})(x + \sqrt{x - 2})} + x + \sqrt{x - 2} = 9$$

$$2\sqrt{(x^2 - (x - 2))} = 9 - 2x \Rightarrow \text{ ОД3: } 9 - 2x \ge 0 \Rightarrow x \le \frac{9}{2} \Rightarrow$$

$$4(x^2 - x + 2) = 81 - 36x + 4x^2 \Rightarrow 4x^2 - 4x + 8 = 81 - 36x + 4x^2 \Rightarrow 32x = 73 \Rightarrow$$

$$x = \frac{73}{32}.$$

OTBET: $x = \frac{73}{32}$.

8.
$$4x^2 + \sqrt{4x^2 - 6x + 5} = 6x + 7$$
.

Решение.

$$4x^2 + \sqrt{4x^2 - 6x + 5} = 6x + 7.$$

Перепишем уравнение следующим образом: $4x^2-6x-7+\sqrt{4x^2-6x+5}=0$. Замена: $\sqrt{4x^2-6x+5}=t\geq 0 \Rightarrow$ $t^2=4x^2-6x+5\Rightarrow 4x^2-6x-7=t^2-12\Rightarrow$ Уравнение имеет вид: $t^2-12+t=0\Rightarrow t_1=-4; \quad t_2=3.$

Так как только $t_2 = 3 \ge 0$, то

$$\sqrt{4x^2 - 6x + 5} = 3 \Rightarrow 4x^2 - 6x + 5 = 9 \Rightarrow 4x^2 - 6x - 4 = 0 \Rightarrow 2x^2 - 3x - 2 = 0 \Rightarrow x_1 = -\frac{1}{2}, x_2 = 2.$$

Otbet:
$$x_1 = -\frac{1}{2}, x_2 = 2.$$

Задачи для самостоятельного решения

Решите уравнения:

1.
$$\sqrt{15-x} = 3$$
.

2.
$$\sqrt{3x-8} = 5$$
.

3.
$$\sqrt[3]{x-4} = 3$$
.

4.
$$\sqrt{\frac{1}{15-4x}} = 0.2.$$

5.
$$\sqrt{\frac{6}{4x-54}} = \frac{1}{7}$$
.

6.
$$\sqrt{x-5} + 0.6 = 0$$
.

7.
$$\sqrt{2x-1} = \sqrt{x+4}$$
.

8.
$$\sqrt{3x^2 - 12} = \sqrt{2x^2 + 4}$$
.

9.
$$\sqrt{x-1} + \sqrt{x+2} + \sqrt{x-3} = 0$$
.

10.
$$\sqrt{x^2 + 3} = x + 2$$
.

11.
$$\sqrt{x^2-9} = x-4$$
.

$$12. \ \sqrt{x+4} = \frac{1}{3}x + 2.$$

13.
$$\sqrt{-72-17x} = -x$$
.

14.
$$2\sqrt{x^2 - 2x - 2.75} = x - 2$$
.

15.
$$\sqrt{x-7} + \sqrt{3-x} = 2$$
.

16.
$$\sqrt{x-3} - \sqrt{x-6} = 1$$
.

17.
$$\sqrt{x-7} + \sqrt{3-x} = -8$$
.

18.
$$x + \sqrt{x^2 + x - 1} = 2$$
.

19.
$$2 + \sqrt{9x^2 + 2x - 3} = 3x$$
.

20.
$$1 - 2\sqrt{x^2 + 1} = 2x$$
.

21.
$$x - \sqrt{3(7-2x)} = 3$$
.

22.
$$\sqrt{x+2} + \sqrt{x-4} = 2\sqrt{x+1}$$
.

23.
$$\sqrt{5x+7} - \sqrt{3x+1} = \sqrt{x+3}$$
.

24.
$$\sqrt{\frac{x+1}{x-1}} - \sqrt{\frac{x-1}{x+1}} = \frac{3}{2}$$
.

25.
$$\frac{x-1}{\sqrt{x}+1} = 4 + \frac{\sqrt{x}-1}{2}$$
.

26.
$$\sqrt{3+x} + \sqrt{6+x} = \frac{3}{\sqrt{3+x}}$$
.

27.
$$\sqrt{3x+1} + \sqrt{9-x} = \frac{6}{\sqrt{9-x}}$$
.

28.
$$\sqrt{3x+5} + \sqrt{10-x} = \frac{15}{\sqrt{10-x}}$$
.

29.
$$(x-3)^2 + 3x - 22 = \sqrt{x^2 - 3x + 7}$$
.

$$30. \sqrt{12 - \frac{12}{x^2}} - x^2 + \sqrt{x^2 - \frac{12}{x^2}} = 0.$$

§ 3. Системы уравнений

Совокупность уравнений вида $\begin{cases} f_1(x,y) = 0, \\ f_2(x,y) = 0 \end{cases}$ называется системой двух уравнений с двумя неизвестными x u y.

Здесь $f_1(x,y)$ и $f_2(x,y)$ — некоторые соотношения между x и y. Уравнение $f_1(x,y) = 0$ будем обозначать (1), а уравнение $f_2(x,y) = 0$ будем обозначать (2).

Решить систему уравнений — это значит найти значения неизвестных величин x и y, которые превращают уравнения (1) и (2) в тождество.

Уравнения (1) и (2) можно складывать, вычитать и умножать на число.

Примеры

Решить системы уравнений:

1.
$$\begin{cases} 2x + y = 4, \\ 3y - 2x = 4. \end{cases}$$

Решение.

Из (1)
$$y = 4 - 2x \Rightarrow \begin{cases} y = 4 - 2x, \\ 3 \cdot (4 - 2x) - 2x = 4. \end{cases}$$

Решим уравнение (2) относительно x:

$$12 - 6x - 2x = 4 \Rightarrow 8x = 8 \Rightarrow x = 1$$
 и из (1) следует, что $y = 2$.

OTBET: x = 1, y = 2.

2.
$$\begin{cases} 5x + 7y = 13, \\ 2x - 5y = -26. \end{cases}$$

Решение.

Уравнение (1) умножим на 2, уравнение (2) – на $5 \Rightarrow$

$$\begin{cases} 10x + 14y = 26, \\ 10x - 25y = -130. \end{cases}$$

Из (1) вычтем (2): ⇒

$$\begin{cases} 39 \ y = 156, \\ 10x - 25 \ y = -130. \end{cases} \Rightarrow \begin{cases} y = 4, \\ 10x - 25 \ y = -130. \end{cases} \Rightarrow x = -3, \ y = 4$$

Otbet: x = -3, y = 4.

$$3. \begin{cases} x + y = 10, \\ xy = 21. \end{cases}$$

Из (1)
$$y = 10 - x \Rightarrow$$
 из (2),

$$x(10-x) = 21. \Rightarrow 10x - x^2 = 21 \Rightarrow x^2 - 10x + 21 = 0 \Rightarrow$$

 $x_1 = 3, \quad x_2 = 7 \Rightarrow y_1 = 10 - 3 = 7, \quad y_2 = 10 - 7 = 3.$

Otbet:
$$x_1 = 3$$
, $y_1 = 7$; $x_2 = 7$, $y_2 = 3$.

4.
$$\begin{cases} x + xy + y = 11, \\ x - xy + y = 1. \end{cases}$$

Решение.

$$K(1)$$
 прибавим (2): $2x + 2y = 12 \Rightarrow x + y = 6$.

K (1) вычтем (2):
$$2xy = 10 \Rightarrow xy = 5 \Rightarrow \begin{cases} x + y = 6, \\ xy = 5. \end{cases}$$

Из (1)
$$y = 6 - x \Rightarrow$$
 из (2) $x(6 - x) = 5 \Rightarrow 6x - x^2 = 5 \Rightarrow x^2 - 6x + 5 = 0 \Rightarrow$ $x_1 = 1$, $x_2 = 5 \Rightarrow y_1 = 6 - 1 = 5$, $y_2 = 6 - 5 = 1$.

Otbet:
$$x_1 = 1$$
, $y_1 = 5$; $x_2 = 5$, $y_2 = 1$.

5.
$$\begin{cases} x^2 + xy + y^2 = 37, \\ x^3 - y^3 = 37. \end{cases}$$

Решение.

Из (2) имеем
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2) = 37 \Rightarrow$$
 с учетом (1)

$$(x-y)37 = 37 \Longrightarrow (x-y) = 1 \Longrightarrow \begin{cases} x^2 + xy + y^2 = 37, \\ x - y = 1. \end{cases}$$

из (2)
$$x = y + 1 \Rightarrow$$
 из (1)

$$(y+1)^2 + (y+1)y + y^3 = 37 \Rightarrow y^2 + 2y + 1 + y^2 + y + y^2 = 37 \Rightarrow$$

$$3y^2 + 3y - 36 = 0 \Rightarrow y^2 + y - 12 = 0 \Rightarrow y_1 = -4, y_2 = 3 \Rightarrow$$

$$x_1 = -4 + 1 = -3$$
; $x_2 = 3 + 1 = 4$.

Otbet:
$$x_1 = -3$$
, $y_1 = -4$; $x_2 = 4$, $y_2 = 3$.

6.
$$\begin{cases} \frac{x}{y} + \frac{y}{x} = \frac{10}{3}, \\ x^2 - y^2 = 8. \end{cases}$$

Решение.

Пусть имеем
$$\frac{x}{y} = a$$
, тогда (1) имеет вид $a + \frac{1}{a} = \frac{10}{3} \Rightarrow$

$$3a^2 + 3 = 10a \Rightarrow 3a^2 - 10a + 3 = 0 \Rightarrow a_1 = \frac{1}{3}, \quad a_2 = 1. \Rightarrow$$

$$\Rightarrow 1) \quad \begin{cases} \frac{x}{y} = \frac{1}{3}, \\ x^2 - y^2 = 8, \end{cases} \qquad 2) \quad \begin{cases} \frac{x}{y} = 3, \\ x^2 - y^2 = 8. \end{cases}$$

Для системы 1) имеем $\begin{cases} 3x = y, \\ x^2 - (3x)^2 = 8. \end{cases} \Rightarrow -8x^2 = 8$ — решений нет, так как $-8x^2 \le 0$.

Для системы 2) имеем
$$\begin{cases} x = 3y, \\ x^2 - y^2 = 8. \end{cases} \Rightarrow (3y)^2 - y^2 = 8 \Rightarrow 8x^2 = 8 \Rightarrow$$
 $y_{\frac{1}{2}} = \pm 1 \Rightarrow x_{1,2} = \pm 3.$

Other:
$$x_1 = 3$$
, $y_1 = 1$; $x_2 = -3$, $y_2 = -1$.

7.
$$\begin{cases} xy + 6 = \frac{7x}{y}, \\ 26 - \frac{x}{y} = 3xy. \end{cases}$$

Решение.

Обозначим xy = a, $\frac{x}{y} = b$. Тогда система имеет вид

$$\begin{cases} a+6=7b, \\ 26-b=3a \end{cases} \Rightarrow \begin{cases} a=7b-6, \\ 26-b=3(7b-6) \end{cases} \Rightarrow$$

$$26 - b = 21b - 18 \Rightarrow 22b = 44 \Rightarrow b = 2$$
.

Тогда

$$a = 7 \cdot 2 - 6 = 8 \Rightarrow \begin{cases} \frac{x}{y} = 2, \\ xy = 8 \end{cases} \Rightarrow \begin{cases} x = 2y, \\ 2y^2 = 8 \end{cases} \Rightarrow y^2 = 4 \Rightarrow y_{1,2} = \pm 2 \Rightarrow x_{1,2} = \pm 4.$$

Otbet:
$$x_1 = 4$$
, $y_1 = 2$; $x_2 = -4$, $y_2 = -2$.

8.
$$\begin{cases} x + y + \frac{x}{y} = \frac{1}{2}, \\ \frac{x^2}{y} + x = -\frac{1}{2}. \end{cases}$$

Преобразуем (2) к виду $\frac{x^2 + xy}{y} = -\frac{1}{2} \Rightarrow \frac{x(x+y)}{y} = -\frac{1}{2} \Rightarrow$ система имеет

вид
$$\begin{cases} x + y + \frac{x}{y} = \frac{1}{2}, \\ \frac{x}{y}(x+y) = -\frac{1}{2}. \end{cases}$$

Пусть
$$x + y = a$$
, $\frac{x}{y} = b \Rightarrow$

$$\begin{cases} a+b=\frac{1}{2}, \\ ab=-\frac{1}{2}. \end{cases} \Rightarrow \begin{cases} a=\frac{1}{2}-b, \\ \left(\frac{1}{2}-b\right)b=-\frac{1}{2}. \Rightarrow \frac{1}{2}b-b^2=-\frac{1}{2} \Rightarrow 2b^2-b-1=0 \Rightarrow 0 \end{cases}$$

$$b_1 = -\frac{1}{2}$$
, $b_2 = 1 \Rightarrow a_1 = 1$, $a_2 = -\frac{1}{2}$.

$$\Rightarrow 1) \begin{cases} x+y=1, \\ \frac{x}{y}=-\frac{1}{2}, \end{cases} \Rightarrow \begin{cases} x-1=-y, \\ 2x=y. \end{cases} \Rightarrow 2x=x-1 \Rightarrow x=-1$$

$$y = 2 \Rightarrow x_1 = -1, y_1 = 2.$$

$$\Rightarrow 2) \begin{cases} x + y = -\frac{1}{2}, \\ \frac{x}{y} = 1, \end{cases} \Rightarrow \begin{cases} y + y = -\frac{1}{2}, \Rightarrow 2y = -\frac{1}{2} \Rightarrow y = -\frac{1}{4} \Rightarrow x = y \end{cases}$$

$$x = -\frac{1}{4} \implies x_2 = -\frac{1}{4}, \quad y_2 = -\frac{1}{4}.$$

Otbet:
$$x_1 = -1$$
, $y_1 = 2$; $x_2 = -\frac{1}{4}$, $y_2 = -\frac{1}{4}$.

9.
$$\begin{cases} x^2 - 5y^2 + 4xy = 0, \\ x^2 - 8y^2 - 7xy = 52. \end{cases}$$

Решение.

Обе части уравнения (1) разделим на y^2 ($y \ne 0$), так как при $y = 0 \Rightarrow x = 0$, но при x = y = 0 уравнение (2) имеет вид 0 = 52, что неверно.

После деления уравнение (1) имеет вид $\frac{x^2}{y^2} - 5 + \frac{4x}{y} = 0$. Обозначим

$$\frac{x}{y} = a \Rightarrow a^2 + 4a - 5 = 0 \Rightarrow a_1 = -5, \quad a_2 = 1 \Rightarrow$$

$$\Rightarrow 1) \begin{cases} \frac{x}{y} = -5, \\ x^2 - 8y^2 - 7xy = 52. \end{cases} \Rightarrow \begin{cases} x = -5y, \\ (-5y)^2 - 8y^2 - 7(-5y)y = 52 \end{cases} \Rightarrow$$

$$25y^2 - 8y + 35y^2 = 52 \Rightarrow 52y^2 = 52 \Rightarrow y_{1,2} = \pm 1 \Rightarrow x_{1,2} = \mp 5.$$

$$\Rightarrow 2) \begin{cases} \frac{x}{y} = 1, \\ x^2 - 8y^2 - 7xy = 52. \end{cases} \Rightarrow \begin{cases} x = y, \\ y^2 - 8y^2 - 7y \cdot y = 52 \end{cases} \Rightarrow$$

 \Rightarrow $-14 y^2 = 52 \Rightarrow$ решений нет, так как \Rightarrow $-14 y^2 \le 0$.

Otbet: $x_1 = -5$, $y_1 = 1$; $x_2 = 5$, $y_2 = -1$.

10.
$$\begin{cases} \frac{x^2 + y^2}{x + y} = \frac{10}{3}, \\ \frac{1}{x} + \frac{1}{y} = \frac{3}{4}. \end{cases}$$

Решение.

Уравнение (2) приведем к виду $\frac{x+y}{xy} = \frac{3}{4}$. Здесь есть сумма (x+y) и произведение xy. Сделаем так , чтобы и в уравнении (1) были эти комбинации:

$$\frac{10}{3} = \frac{x^2 + y^2}{x + y} = \frac{x^2 + 2xy + y^2 - 2xy}{x + y} = \frac{(x + y)^2 - 2xy}{x + y} = x + y - \frac{2xy}{x + y}.$$

Тогда система имеет вид

$$\begin{cases} x + y - \frac{2xy}{x + y} = \frac{10}{3}, \\ \frac{x + y}{xy} = \frac{3}{4}. \end{cases} \Rightarrow \begin{cases} x + y - 2\frac{4}{3} = \frac{10}{3}, \\ \frac{xy}{x + y} = \frac{4}{3} \end{cases} \Rightarrow \begin{cases} x + y = \frac{10}{3} + \frac{8}{3}, \\ \frac{xy}{x + y} = \frac{4}{3} \end{cases} \Rightarrow$$

Otbet: $x_1 = 4$, $y_1 = 2$; $x_2 = 2$, $y_2 = 4$.

11.
$$\begin{cases} x\sqrt{y} + y\sqrt{x} = 6, \\ x^2y + y^2x = 20. \end{cases}$$

Возведем в квадрат обе части уравнения (1): $x^2y + y^2x + 2xy\sqrt{xy} = 36$. Тогда, с учетом уравнения (2), имеем $20 + 2xy\sqrt{xy} = 36 \Rightarrow 2\sqrt{(xy)^3} = 16 \Rightarrow (xy)^3 = 64 \Rightarrow xy = 4$. Это уравнение и уравнение (2) образуют систему

$$\begin{cases} xy = 4, \\ xy(x+y) = 20 \end{cases} \Rightarrow \begin{cases} xy = 4, \\ x+y = 5 \end{cases} \Rightarrow \begin{cases} (5-y)y = 4, \\ x = 5-y \end{cases} \Rightarrow \\ 5y - y^2 = 4 \Rightarrow y^2 - 5y + 4 = 0 \Rightarrow y_1 = 1, y_2 = 4 \Rightarrow x_1 = 4, x_2 = 1. \end{cases}$$
OTBET: $x_1 = 4, y_1 = 1; x_2 = 1, y_2 = 4.$

Задачи для самостоятельного решения

Решите системы уравнений:

1.
$$\begin{cases} 3x - y = -1 \\ -x + 2y = 7. \end{cases}$$

2.
$$\begin{cases} 5x - y = 7 \\ 3x + 2y = -1. \end{cases}$$

3.
$$\begin{cases} 4x + y = 10 \\ x + 3y = -3. \end{cases}$$

4.
$$\begin{cases} x + y = 5 \\ 2x + 2y = 3. \end{cases}$$

5.
$$\begin{cases} x + y = 5 \\ 2x + 2y = 10. \end{cases}$$

6.
$$\begin{cases} x + 4y = 18 \\ x^2 + y^2 = 20. \end{cases}$$

7.
$$\begin{cases} 2x + y = 4 \\ 4x^2 + y^2 = 40. \end{cases}$$

11.
$$\begin{cases} x^3 - y^3 = 7 \\ x - y = 1. \end{cases}$$

12.
$$\begin{cases} x^2 + xy + y^2 = 37 \\ x^3 - y^3 = 37. \end{cases}$$

13.
$$\begin{cases} x^2 + 3xy + 2y^2 = 42\\ (x-5)(y+4) = 0. \end{cases}$$

14.
$$\begin{cases} x^2 + y^2 + x + y = 18 \\ x^2 - y^2 + x - y = 6. \end{cases}$$

15.
$$\begin{cases} x^2y + y^2x = 20\\ x^3 + y^3 = 65. \end{cases}$$

16.
$$\begin{cases} \frac{x}{y+1} = \frac{y}{x+1} \\ x^2 + 2y + 1 = 0 \end{cases}$$

17.
$$\begin{cases} \frac{x+y}{x-y} + \frac{x-y}{x+y} = \frac{5}{2} \\ x^2 + y^2 = 20. \end{cases}$$

8.
$$\begin{cases} 2x - y - xy = 14 \\ x + 2y + xy = -7. \end{cases}$$

18.
$$\begin{cases} \frac{x^2}{y} + \frac{y^2}{x} = 18\\ x + y = 12. \end{cases}$$

9.
$$\begin{cases} 2x^2 - xy + 3y^2 - 7x - 12y + 1 = 0 \\ x - y = -1. \end{cases}$$

19.
$$\begin{cases} \sqrt{x} + 3y = 9\\ x - 1 = \left(\sqrt{x} + 1\right)y. \end{cases}$$

10.
$$\begin{cases} 3x^2 + 2xy - 9x - 4y + 6 = 0 \\ 5x^2 + 2xy - 12x - 4y + 4 = 0. \end{cases}$$
 20.
$$\begin{cases} x^2 + y^2 - xy = 61 \\ x + y - \sqrt{xy} = 7. \end{cases}$$

20.
$$\begin{cases} x^2 + y^2 - xy = 61\\ x + y - \sqrt{xy} = 7. \end{cases}$$

§ 4. Показательные уравнения

Уравнение, содержащее переменную x в показателе степени, называется *показательным*.

Показательное уравнение вида $a^{f(x)} = a^{g(x)}$, где $a > 0, a \ne 1$, равносильно уравнению f(x) = g(x).

При решении показательных уравнений необходимо учитывать, что $a^{f(x)} > 0$.

Имеются два основных метода решения показательных уравнений:

- 1. Метод уравнивания показателей, т.е. преобразование заданного уравнения к уравнению вида $a^{f(x)} = a^{g(x)}$, а затем к виду f(x) = g(x).
 - 2. Метод введения новой переменной.
 - 3. Графический метод.

Примеры

Решить уравнения:

1.
$$5^{x+7} = \left(\frac{1}{5}\right)^{x+3}$$
.

Решение.

$$5^{x+7} = \left(\frac{1}{5}\right)^{x+3} \Rightarrow 5^{x+7} = 5^{-x-3} \Rightarrow x+7 = -x-3 \Rightarrow 2x = -10 \Rightarrow x = -5.$$

Other: x = -5.

$$2. \left(\frac{1}{8}\right)^{\frac{2x^2}{3}} = 4^{-x} \cdot 8^{-4}.$$

Решение.

$$\left(\frac{1}{8}\right)^{\frac{2x^2}{3}} = 4^{-x} \cdot 8^{-4} \implies (2)^{(-3) \cdot \frac{2x^2}{3}} = 2^{-2x} \cdot 2^{-12} \implies -2x^2 = -2x - 12 \implies x^2 - x - 6 = 0 \implies x_1 = -2, \quad x_2 = 3.$$

Otbet: $x_1 = -2$; $x_2 = 3$.

3.
$$7^{x+1} + 3 \cdot 7^x = 3^{x+2} + 3^x$$
.

Решение.

$$7^{x+1} + 3 \cdot 7^x = 3^{x+2} + 3^x \implies 7 \cdot 7^x + 3 \cdot 7^x = 9 \cdot 3^x + 3^x \implies 10 \cdot 7^x = 10 \cdot 3^x \implies$$

$$7^x = 3^x \implies \frac{7^x}{3^x} = 1 \implies \left(\frac{7}{3}\right)^x = \left(\frac{7}{3}\right)^0 \implies x = 0.$$

Otbet: x = 0.

4.
$$6^{x-2} - \left(\frac{1}{6}\right)^{3-x} + 36^{\frac{x-1}{2}} = 246$$
.

Решение.

$$6^{x-2} - \left(\frac{1}{6}\right)^{3-x} + 36^{\frac{x-1}{2}} = 246 \implies 6^{x-2} - 6^{x-3} + 6^{\frac{x-1}{2}} = 41 \cdot 6 \implies$$

$$\Rightarrow \frac{1}{36} \cdot 6^x - \frac{1}{216} \cdot 6^x + \frac{1}{6} 6^x = 41 \cdot 6 \implies 6^x \left(\frac{1}{36} - \frac{1}{216} + \frac{1}{6}\right) = 41 \cdot 6 \implies$$

$$6^x \cdot \left(\frac{6-1+36}{216}\right) = 41 \cdot 6 \implies 6^x \cdot \frac{41}{216} = 41 \cdot 6 \implies 6^x = 6 \cdot 216 \implies 6^x = 6^4 \implies x = 4.$$

Otbet: x = 4.

5.
$$3 \cdot 2^x + 4^x = 10$$
.

Решение.

$$3 \cdot 2^{x} + 4^{x} = 10 \Rightarrow 3 \cdot 2^{x} + 2^{2x} = 10 \Rightarrow 3 \cdot 2^{x} + (2^{x})^{2} = 10$$

Замена:
$$2^x = t > 0 \Rightarrow 3t + t^2 = 10 \Rightarrow t^2 + 3t - 10 = 0 \Rightarrow t_1 = -5$$
, $t_2 = 2$.

Ho
$$t_1 = -5$$
 — посторонний корень, так как $t > 0 \Rightarrow 2^x = 2 \Rightarrow x = 1$.

Otbet: x = 1.

6.
$$3 \cdot 9^{x^2+1} - 5 \cdot 3^{x^2+2} + 18 = 0$$
.

Решение.

$$3 \cdot 9^{x^2+1} - 5 \cdot 3^{x^2+2} + 18 = 0 \Rightarrow 3 \cdot 9 \cdot 9^{x^2} - 5 \cdot 3^2 \cdot 3^{x^2} + 18 = 0 \Rightarrow$$

$$3 \cdot 9^{x^2} - 5 \cdot 3^{x^2} + 2 = 0 \Rightarrow 3 \cdot (3^{x^2})^2 - 5 \cdot 3^{x^2} + 2 = 0 \Rightarrow$$

Замена:
$$3^{x^2} \ge 1!!! \Longrightarrow 3t^2 - 5t + 2 = 0 \Longrightarrow t_1 = \frac{2}{3}, \quad t_2 = 1.$$

Ho
$$t_1 = \frac{2}{3}$$
 — посторонний корень, так как

$$t > 1 \Longrightarrow 3^{x^2} = 1 \Longrightarrow 3^{x^2} = 3^0 \Longrightarrow x^2 = 0 \Longrightarrow x = 0.$$

Other: x = 0.

7.
$$4^{x+3} - (0.25)^{x+1} = 15$$
.

$$4^{x+3} - (0.25)^{x+1} = 15 \Rightarrow 4^3 \cdot 4^x - \frac{1}{4} \cdot \left(\frac{1}{4}\right)^x = 15 \Rightarrow 256 \cdot 4^x - 4^{-x} = 60 \Rightarrow$$

Замена:
$$4^x = t > 0 \Rightarrow 256t - \frac{1}{t} = 60 \Rightarrow 256t^2 - 60t - 1 = 0 \Rightarrow t_1 = -\frac{1}{64}, \quad t_2 = \frac{1}{4}.$$

Ho
$$t_1 = -\frac{1}{64}$$
 — посторонний корень, так как

$$t > 0 \Longrightarrow t = \frac{1}{4} \Longrightarrow 4^x = \frac{1}{4} \Longrightarrow 4^x = 4^{-1} \Longrightarrow x = -1.$$

Ответ: x = -1.

$$8. \ \frac{2^{x}}{5^{x-1}} + 3 = \frac{5^{x}}{2^{x-1}}.$$

Решение.

$$\frac{2^{x}}{5^{x-1}} + 3 = \frac{5^{x}}{2^{x-1}} \implies \frac{5 \cdot 2^{x}}{5^{x}} + 3 = \frac{2 \cdot 5^{x}}{2^{x}} \implies 5 \cdot \left(\frac{2}{5}\right)^{x} + 3 = 2 \cdot \left(\frac{5}{2}\right)^{x}.$$

Замена:

$$\left(\frac{5}{2}\right)^{x} = t > 0 \Rightarrow \frac{5}{t} + 3 = 2t \quad \Rightarrow \quad 2t^{2} - 3t - 5 = 0 \quad \Rightarrow \quad t_{1} = -1, \quad t_{2} = \frac{5}{2}.$$

Ho $t_1 = -1$ — посторонний корень, так как

$$t > 0 \Rightarrow t = \frac{5}{2} \Rightarrow \left(\frac{5}{2}\right)^x = \frac{5}{2} \Rightarrow x = 1.$$

Otbet: x = 1.

9.
$$9^x + 6^x - 2 \cdot 4^x = 0$$
.

Решение.

$$9^{x} + 6^{x} - 2 \cdot 4^{x} = 0 \implies 3^{2x} + (2 \cdot 3)^{x} - 2 \cdot 2^{2x} = 0 \implies (3^{x})^{2} + 2^{x} \cdot 3^{x} - 2 \cdot (2^{x})^{2} = 0.$$

Разделим обе части уравнения на $(2^x)^2 \neq 0$:

$$\left(\frac{3^x}{2^x}\right)^2 + \left(\frac{3^x}{2^x}\right) - 2 = 0 \implies \left(\frac{3}{2}\right)^{2x} + \left(\frac{3}{2}\right)^x - 2 = 0.$$

Пусть
$$\left(\frac{3}{2}\right)^{x} = t > 0 \Rightarrow$$
 уравнение имеет вид $t^{2} + t - 2 = 0 \Rightarrow t_{1} = -2, t_{2} = 1.$

Ho $t_1 = -2$ — посторонний корень, так как

$$t > 0 \Longrightarrow \left(\frac{3}{2}\right)^{x} = 1 \Longrightarrow \left(\frac{3}{2}\right)^{x} = \left(\frac{3}{2}\right)^{0} \Longrightarrow x = 0.$$

Otbet: x = 0.

10.
$$2^{4x} - 7 \cdot 4^x \cdot 3^{x-1} + 4 \cdot 3^{2x-1} = 0$$
.

Решение.

$$2^{4x} - 7 \cdot 4^{x} \cdot 3^{x-1} + 4 \cdot 3^{2x-1} = 0 \implies 4^{2x} - \frac{7}{3} \cdot 4^{x} \cdot 3^{x} + \frac{4}{3} \cdot 3^{2x} = 0 \implies$$

$$3 \cdot 4^{2x} - 7 \cdot 4^x \cdot 3^x + 4 \cdot 3^{2x} = 0.$$

Разделим обе части уравнения на $3^{2x} \Rightarrow$

$$3 \cdot \left(\frac{4}{3}\right)^{2x} - 7 \cdot \left(\frac{4}{3}\right)^{x} + 4 = 0$$
 Замена: $\left(\frac{4}{3}\right)^{x} = t > 0 \Rightarrow$ уравнение имеет вид

$$3t^{2} - 7t + 4 = 0 \Rightarrow t_{1} = 1, \quad t_{2} = \frac{4}{3}. \Rightarrow \begin{bmatrix} \left(\frac{4}{3}\right)^{x} = 1, \\ \left(\frac{4}{3}\right)^{x} = \frac{4}{3}. \end{bmatrix} \Rightarrow \begin{bmatrix} x = 0, \\ x = 1. \end{bmatrix}$$

Otbet: x = 0, x = 1.

11.
$$8^x + 8 = 3 \cdot 4^x + 3 \cdot 2^{x+1}$$
.

Решение.

$$8^{x} + 8 = 3 \cdot 4^{x} + 3 \cdot 2^{x+1}$$
 $\Rightarrow 2^{3x} + 8 - 3 \cdot 2^{2x} - 3 \cdot 2 \cdot 2^{x} = 0$ \Rightarrow $(2^{x})^{3} + 2^{3} - 3 \cdot 2^{x} \cdot (2^{x} + 2) = 0$ $\Rightarrow (2^{x} + 2)(2^{2x} - 2 \cdot 2^{x} + 4) - 3 \cdot 2^{x}(2^{x} + 2) = 0 \Rightarrow$ $(2^{x} + 2)(2^{2x} - 2 \cdot 2^{x} + 4 - 3 \cdot 2^{x}) = 0 \Rightarrow$ $\Rightarrow (2^{x} + 2) = 0$ или $2^{2x} - 5 \cdot 2^{x} + 4 = 0$.

Уравнение $(2^x + 2 = 0)$ не имеет решений, так как $2^x > 0$.

Для решения уравнения $2^{2x} - 5 \cdot 2^x + 4 = 0$ сделаем замену: $(2)^x = t > 0 \Rightarrow$ уравнение имеет вид $t^2 - 5t + 4 = 0 \Rightarrow t_1 = 1, t_2 = 4. \Rightarrow$

$$\begin{bmatrix} (2)^x = 1, \\ (2)^x = 4. \end{bmatrix} \Rightarrow \begin{bmatrix} x = 0, \\ x = 2. \end{bmatrix}$$

Otbet: x = 0, x = 2.

12.
$$12 + x \cdot 2^x - 6 \cdot x = 2 \cdot 4^x - x \cdot 4^x + 2 \cdot 2^x$$
.

$$12 + x \cdot 2^{x} - 6 \cdot x = 2 \cdot 4^{x} - x \cdot 4^{x} + 2 \cdot 2^{x} \Rightarrow 12 - 6 \cdot x = 2 \cdot 4^{x} - x \cdot 4^{x} + 2 \cdot 2^{x} - x \cdot 2^{x} \Rightarrow 6 \cdot (2 - x) = 4^{x} \cdot (2 - x) + 2^{x} \cdot (2 - x) \Rightarrow (2 - x) \cdot (4^{x} + 2^{x} - 6) = 0 \Rightarrow$$

$$2-x=0$$
, или $4^x+2^x-6=0$ \Rightarrow

Если $2-x=0 \Rightarrow x_1=2$.

Если $4^x + 2^x - 6 = 0$, то заменим $2^x = t > 0 \Rightarrow t^2 + t - 6 = 0 \Rightarrow t_1 = -3 -$ посторонний корень, $t_2 = 2 \Rightarrow 2^x = 2 \Rightarrow x_2 = 1$.

Other: x = 1, x = 2.

13.
$$81^x - 16^x - 2 \cdot (9^x - 4^x) \cdot 9^x + 36^x = 0$$
.

Решение.

$$81^{x} - 16^{x} - 2 \cdot (9^{x} - 4^{x}) \cdot 9^{x} + 36^{x} = 0 \Rightarrow 9^{2x} - 4^{2x} - 2 \cdot 9^{2x} + 2 \cdot 4^{x} \cdot 9^{x} + 4^{x} \cdot 9^{x} = 0 \Rightarrow$$
 $-9^{2x} + 3 \cdot 4^{x} \cdot 9^{x} - 4^{2x} = 0 \Rightarrow$ разделим обе части уравнения на -4^{2x} :

$$\left(\frac{9}{4}\right)^{2x} - 3 \cdot \left(\frac{9}{4}\right)^{x} + 1 = 0$$
. Замена: $\left(\frac{9}{4}\right)^{x} = t > 0 \Rightarrow t^{2} - 3t + 1 = 0 \Rightarrow$

$$t_1 = \frac{3 - \sqrt{5}}{2}, \quad t_2 = \frac{3 + \sqrt{5}}{2}, \Rightarrow \left(\frac{9}{4}\right)^x = \frac{3 \pm \sqrt{5}}{2}.$$
 Прологарифмируем обе части

по основанию
$$\frac{9}{4}$$
: $\log_{\frac{9}{4}} \left(\frac{9}{4}\right)^x = \log_{\frac{9}{4}} \left(\frac{3 \pm \sqrt{5}}{2}\right) \Rightarrow x = \log_{\frac{9}{4}} \left(\frac{3 \pm \sqrt{5}}{2}\right)$.

Otbet:
$$x = \log_{\frac{9}{4}} \left(\frac{3 \pm \sqrt{5}}{2} \right)$$
.

Задачи для самостоятельного решения

Решить уравнения:

1.
$$5^{x^2+6x+8} = 1$$
.

$$2. \left(\frac{2}{5}\right)^{6x-7} = \left(\frac{5}{2}\right)^{14x-3}.$$

3.
$$0.125 \cdot 2^{-4x-16} = \left(\frac{0.25}{\sqrt{2}}\right)^x$$
.

4.
$$2^{3+2x} = 4^{1-x^2-3x}$$
.

$$5. \left(\frac{2}{3}\right)^{4\sqrt{x}} = (2,25)^{2\sqrt{x}-4}.$$

6.
$$2^{2+x} + 2^{2-x} = 17$$
.

7.
$$2^x \cdot 5^{x-1} = 200$$
.

8.
$$2^{x^2-6} \cdot 3^{x^2-6} = \frac{\left(6^{-x-1}\right)^4}{6^5}$$
.

9.
$$4 \cdot 2^{2x} - 6^x = 18 \cdot 9^x$$
.

10.
$$64 \cdot 9^{-x} - 84 \cdot 12^{-x} + 27 \cdot 16^{-x} = 0$$
.

11.
$$3^{-12x-1} - 9^{-6x-1} - 27^{-4x-1} + 81^{1-3x} = 2192$$
.

12.
$$5^{x+1} = 5^{x-1} + 24$$
.

13.
$$3^{2x-1} - 9^x + 27^{\frac{2x+2}{3}} = 675$$
.

14.
$$5^{2x-1} + 5^{x+1} = 250$$
.

15.
$$4^{-\frac{2}{x}} - 5 \cdot 2^{-\frac{2}{x}} + 4 = 0.$$

16.
$$2^{x+1} \cdot 5^x = 10^{x+1} \cdot 5^{x+2}$$
.

17.
$$9^{x-\frac{1}{2}} - 8 \cdot 3^{x-1} + 5 = 0$$
, выбрать корни из промежутка $\left(1; \frac{7}{3}\right)$.

18.
$$4^{x^2-2x+1} + 4^{x^2-2x} = 20$$
, выбрать корни из отрезка [-1;2].

$$19.\ 7\cdot 9^{x^2-3x+1}+5\cdot 6^{x^2-3x+1}-48\cdot 4^{x^2-3x}=0,\ \ выбрать\ \ корни\ \ из\ \ отрезка$$
 [–1; 2].

§ 5. Логарифм положительного числа по заданному основанию

Логарифмом положительного числа b по основанию a (a > 0, $a \ne 1$) называется показатель степени, в которую нужно возвести число a, чтобы получилось число b: $a^{\log_a b} = b$.

Равенство $\log_a b = c$ означает, что $a^c = b$. Например, $\log_3 81 = 4$, так

как
$$3^4 = 81$$
; $\log_{\frac{1}{2}} \sqrt{2} = -\frac{1}{2}$, так как $\left(\frac{1}{2}\right)^{-\frac{1}{2}} = 2^{\frac{1}{2}} = \sqrt{2}$.

Из определения логарифма следуют важные равенства:

$$\log_{a} 1 = 0$$
,

$$\log_a a = 1$$
.

Вообще имеет место равенство $\log_a a^r = r$.

В записи $\log_a b$ число a – основание логарифма, b – логарифмируе-мое число.

Свойства логарифмов

$$1. \log_a b \cdot c = \log_a b + \log_a c,$$

$$6.\log_a b = \log_{a^k} b^k,$$

$$2. \log_a \frac{b}{c} = \log_a b - \log_a c,$$

$$7.a^{\log_c b} = b^{\log_c a},$$

$$3. \log_a b^p = p \cdot \log_a b,$$

$$8. \log_a b = \frac{1}{\log_b a},$$

$$4. \log_a b = \frac{\log_a b}{\log_a a},$$

$$9.\log_a b \cdot \log_d c = \log_d b \cdot \log_a c,$$

$$5. \log_{a^p} b = \frac{1}{p} \cdot \log_a b,$$

$$10.\log_{a^q} b^p = \frac{p}{q}\log_a b.$$

Замечание. Если a = 10, то логарифм называется *десятичным*, вместо записи $\log_{10} b$ принято записывать $\lg b$.

Если a=e , то логарифм называется *натуральным*, вместо записи $\log_a b$ принято записывать $\ln b$.

Примеры

Вычислить:

1.
$$\log_2 27 - 2 \cdot \log_2 3 + \log_2 \frac{2}{3}$$
.

Решение.

$$\log_2 27 - 2 \cdot \log_2 3 + \log_2 \frac{2}{3} = \log_2 27 - \log_2 3^2 + \log_2 \frac{2}{3} = \log_2 \frac{27}{9} + \log_2 \frac{2}{3} = \log_2 3 \cdot \frac{2}{3} = \log_2 3 \cdot \frac{2}{3} = \log_2 2 = 1.$$

Ответ: 1.

2. $\log_2 \log_4 \log_8 64$.

Решение.

$$\log_2 \log_4 (\log_8 64) = \log_2 \log_4 (2) = \log_2 \frac{1}{2} = -1.$$

Ответ: -1.

3.
$$(64)^{\log_{\frac{1}{8}}\frac{1}{5\sqrt{5}}}$$
.

Решение.

$$(64)^{\log_{\frac{1}{8}} \frac{1}{5\sqrt{5}}} = (64)^{\log_{\frac{1}{8}} 5^{-\frac{3}{2}}} = (64)^{-\log_{8^{-1}} 5^{\frac{3}{2}}} = (8^2)^{\log_{8} 5^{\frac{3}{2}}} = 8^{2 \cdot \log_{8} 5^{\frac{3}{2}}} = 8^{\log_{8} 5^{\frac{3}$$

Ответ: 125.

4.
$$(lg 2^{3 \cdot log_2 10})^3$$
.

Решение.

$$\left(\lg 2^{3 \cdot \log_2 10}\right)^3 = \left(\lg 2^{\log_2 10^3}\right)^3 = \left(\lg 2^{\log_2 10^3}\right)^3 = \left(\lg 10^3\right)^3 = \left(3 \cdot \lg 10\right)^3 = 3^3 = 27.$$

Ответ: 27.

$$5. \sqrt{10^{2+\frac{1}{2}lg_{16}}}.$$

Решение.

$$\sqrt{10^{^{2+\frac{1}{2}l_{g16}}}} = \sqrt{10^{^{2}} \cdot 10^{^{\frac{1}{2}l_{g16}}}} = \sqrt{100 \cdot 10^{^{lg\sqrt{16}}}} = \sqrt{100 \cdot 4} = 20.$$

Ответ: 20.

6.
$$\sqrt[4]{25^{-3 \cdot \log_{\sqrt{5}} 0.1}} + 64^{\log_4 5}$$
.

$$\sqrt[4]{25^{-3 \cdot \log_{\sqrt{5}} 0.1}} + 64^{\log_4 5} = \sqrt[4]{25^{-3 \cdot \log_{5} \frac{10^{-1}}{5}}} + 4^{3 \cdot \log_4 5} = \sqrt[4]{25^{6 \cdot \log_5 10}} + 4^{\log_4 125} = \sqrt[4]{5^{12 \cdot \log_5 10}} + 125 = \sqrt[4]{10^{12}} + 125 = 10^3 + 125 = 1125.$$

Ответ: 1125.

7.
$$16(\log_9 45 - 1) \cdot \log_{11} 9 \cdot \log_5 121$$
.

Решение.

$$16 \cdot (\log_{9} 45 - 1) \cdot \log_{11} 9 \cdot \log_{5} 121 = 16 \cdot (\log_{9} 45 - \log_{9} 9) \log_{11} 9 \cdot \log_{5} 11^{2} = 16 \cdot (\log_{9} \frac{45}{9}) \log_{11} 9 \cdot 2 \cdot \log_{5} 11 = 32 \cdot \log_{9} 5 \cdot \log_{11} 9 \cdot \log_{5} 11 = 32 \cdot \log_{9} 5 \cdot \frac{1}{\log_{9} 11} \cdot \frac{\log_{9} 11}{\log_{9} 5} = 32.$$

Ответ: 32.

8.
$$\frac{\log_2 66}{\log_6 66} - \log_2 3$$
.

Решение.

$$\frac{\log_2 66}{\log_6 66} - \log_2 3 = \frac{\log_6 66}{\log_6 2\log_6 66} - \log_2 3 = \log_2 6 - \log_2 3 = \log_2 \frac{6}{3} = 1.$$

Ответ: 1.

9.
$$20^{\frac{1}{2\log_{81}5}} \cdot (0.25)^{\frac{1}{2\log_{81}5}}$$
.

Решение.

$$20^{\frac{1}{2\log_{8} 15}} \cdot \left(0,25\right)^{\frac{1}{2\log_{8} 15}} = \left(20 \cdot 0,25\right)^{\frac{1}{\log_{9} 5}} = 5^{\frac{1}{\log_{9} 5}} = 5^{\log_{5} 9} = 9.$$

Ответ: 9.

Задачи для самостоятельного решения

Вычислить:

- $1.9^{\log_3 5}$.
- 2. $\log_{3.8} 10 \cdot \lg(\sqrt[5]{3.8})$.
- 3. $\log_2 \log_2 \sqrt{\sqrt[4]{2}}$.
- 4. $9^{2\log_{16}2+\log_3\sqrt{5}}$.

$$5. \left(\frac{\sqrt[4]{5}}{\sqrt[5]{25}}\right)^{\frac{20}{3}} + \log_4 9 \log_3 4 - 7^{\log_{\sqrt{7}} 3}.$$

$$6. \left(\frac{\sqrt[6]{3} \cdot \sqrt[3]{81}}{\sqrt[5]{3}}\right)^{\frac{20}{13}} + \log_8 32 + \log_2 \sqrt[3]{2} .$$

7.
$$(15 + 3^{1 + \log_3 9}) \cdot \log_2 \sqrt{3} \cdot \log_3 4$$
.

8.
$$(30-5^{1+\log_5 4}) \cdot \log_2 \sqrt{5} \cdot \log_5 4$$
.

9.
$$\log_{7.3} \sqrt[5]{8} : \log_{7.3} \sqrt[20]{8}$$
.

10.
$$\log_6 34 - \log_6 17 + \log_6 18$$
.

$$11. \left(81^{\frac{1}{4}-\frac{1}{2}\log_9 4} + 25^{\log_{125} 8}\right) \cdot 49^{\log_7 2} \,.$$

12.
$$49^{0.5(\log_7 9 - \log_7 6)} - 16 \cdot 5^{-\log_{\sqrt{5}} 4}$$
.

$$13. \left(\frac{\log_{0.4} \log_{9} 243 + 8^{4\log_{16} 3}}{\log_{7} 196 - 2\log_{7} 2} \right).$$

§ 6. Логарифмические уравнения

Уравнение, содержащее переменную x под знаком логарифма, называется *погарифмическим*.

При решении уравнений с логарифмами нужно помнить, что выражение под логарифмом должно быть положительным, а основание — положительным и не равным единице.

Простейшее логарифмическое уравнение имеет вид $\log_a f(x) = \log_a g(x)$, где a > 0, $a \ne 1$.

Чтобы решить простейшее логарифмическое уравнение, нужно:

- 1) решить уравнение f(x) = g(x);
- 2) из найденных корней отобрать те, которые удовлетворяют неравенствам f(x) > 0 и g(x) > 0, остальные корни уравнения f(x) = g(x) являются посторонними для уравнения $\log_a f(x) = \log_a g(x)$.

Имеется два основных метода решения логарифмических уравнений:

- 1) метод преобразования к уравнению вида $\log_a f(x) = \log_a g(x)$, а затем к виду f(x) = g(x);
 - 2) метод введения новой переменной.

Примеры

Решить уравнения:

1.
$$\log_2(3-x) + \log_2(1-x) = 3$$
.

Решение.

ОДЗ:
$$\begin{cases} 3 - x > 0, \\ 1 - x > 0. \end{cases} \Rightarrow \begin{cases} x < 3, \\ x < 1. \end{cases} \Rightarrow x < 1.$$
$$\log_2(3 - x) + \log_2(1 - x) = 3 \Rightarrow$$
$$\Rightarrow \log_2(3 - x)(1 - x) = 3 \Rightarrow (3 - x)(1 - x) = 2^3 \Rightarrow x^2 - 4x + 3 = 8 \Rightarrow$$
$$\Rightarrow x^2 - 4x - 5 = 0 \Rightarrow x_1 = 5, \quad x_2 = -1.$$

Но $x_1 = 5$ — посторонний корень, так как по ОДЗ x < 1.

Ответ: x = -1.

2.
$$\log_{\sqrt{2}} \frac{x-7}{x-1} + \log_2 \frac{x-1}{x+1} = 1$$
.

Решение.

ОДЗ:
$$\begin{cases} \frac{x-7}{x-1} > 0, \\ \frac{x-1}{x+1} > 0. \end{cases} \Rightarrow \begin{cases} x \in (-\infty;1) \cup (7;\infty), \\ x \in (-\infty;-1) \cup (1;\infty). \end{cases} \Rightarrow x \in (-\infty;-1) \cup (7;\infty).$$

$$\log_{\sqrt{2}} \frac{x-7}{x-1} + \log_2 \frac{x-1}{x+1} = 1 \Rightarrow 2\log_2 \frac{x-7}{x-1} + \log_2 \frac{x-1}{x+1} = 1 \Rightarrow$$

$$\log_2\left(\frac{x-7}{x-1}\right)^2 \cdot \left(\frac{x-1}{x+1}\right) = 1 \Longrightarrow \frac{(x-7)^2}{(x-1)^2} \cdot \frac{x-1}{x+1} = 2^1 \Longrightarrow$$

$$\frac{(x-7)^2}{(x-1)^2(x+1)} = 2 \Rightarrow (x-7)^2 = 2(x^2-1) \Rightarrow x^2 - 14x + 49 = x^2 - 14x + 49 = 2x^2 - 2 \Rightarrow$$

 $x^2 + 14x - 51 = 0 \Rightarrow x_1 = -17$, $x_2 = 3$. Но $x_2 = 3$ – посторонний корень.

Otbet: x = -17.

3.
$$(\log_2 x)^2 - 2\log_2 \sqrt{x} = 2$$
.

Решение.

OД3: x > 0

$$(\log_2 x)^2 - 2\log_2 \sqrt{x} = 2 \Longrightarrow (\log_2 x)^2 - 2 \cdot \frac{1}{2}\log_2 x = 2 \Longrightarrow$$

$$(\log_2 x)^2 - \log_2 x - 2 = 0.$$

Пусть

$$\log_2 x = t \Longrightarrow$$

Уравнение

имеет

вид

$$t^2 - t - 2 = 0 \Rightarrow t_1 = -1; \quad t_2 = 2 \Rightarrow$$

$$\begin{bmatrix} \log_2 x = -1 \\ \log_2 x = 2 \end{bmatrix} \Rightarrow \begin{bmatrix} x = \frac{1}{2}, \\ x = 4. \end{bmatrix}$$

Otbet:
$$x_1 = \frac{1}{2}$$
; $x_2 = 4$.

4.
$$\log_2 x - 4\log_{x^2} 4 = 3$$
.

Решение.

ОДЗ:
$$\begin{cases} x > 0, \\ x^2 \neq 1. \end{cases} \Rightarrow \begin{cases} x > 0, \\ x \neq 1. \end{cases}$$

$$\log_2 x - 4\log_{x^2} 4 = 3 \Rightarrow \log_2 x - 4 \cdot 2 \cdot \frac{1}{2}\log_x 2 = 3 \Rightarrow \log_2 x - \frac{4}{\log_2 x} = 3.$$

Пусть $\log_2 x = t \Rightarrow$ Уравнение имеет вид

$$t - \frac{4}{t} = 3 \Longrightarrow t^2 - 3t - 4 = 0 \Longrightarrow t_1 = -1, \quad t_2 = 4. \Longrightarrow$$

$$\begin{bmatrix} \log_2 x = -1, \\ \log_2 x = 4. \end{bmatrix} \Rightarrow \begin{bmatrix} x = \frac{1}{2}; \\ x = 16. \end{bmatrix}$$

Otbet: $x_1 = \frac{1}{2}$; $x_2 = 16$.

$$5. \frac{\log_{27} \frac{27}{x^2}}{\log_{27}^2 x} = 3.$$

Решение.

OД3: x > 0, $x \ne 1$

$$\frac{\log_{27} \frac{27}{x^2}}{\log_{27}^2 x} = 3 \Rightarrow \log_{27} 27 - \log_{27} x^2 = 3\log_{27}^2 x \Rightarrow 1 - 2\log_{27} x = 3\log_{27}^2 x.$$

Пусть

 $\log_2 x = t \Rightarrow$

уравнение

имеет

вид

$$3t^2 + 2t - 1 = 0 \Rightarrow t_1 = -1; \quad t_2 = \frac{1}{3} \Rightarrow$$

$$\begin{bmatrix} \log_{27} x = -1 \\ \log_{27} x = \frac{1}{3} \end{bmatrix} \Rightarrow \begin{bmatrix} x = \frac{1}{27}, \\ x = 3. \end{bmatrix}$$

Otbet: $x_1 = \frac{1}{27}$; $x_2 = 3$.

Задачи для самостоятельного решения

Решить уравнения:

$$1. \log_5\left(\frac{x+1}{10}\right) = \log_5\left(\frac{2}{x}\right).$$

2.
$$\log_3(x-1) + \log_3(x+1) = 1$$
.

3.
$$\frac{\log_2 5}{\log_2 10} + \lg(x+10) = 1 + \lg(21x-20) - \lg(2x-1)$$
.

4.
$$2\log_4(4+x) = 4 - \log_2(x-2)$$

5.
$$\log_3((x+2)(x-2)) = 4\log_9(2x+3) - \log_{\sqrt{5}} 5$$
.

6.
$$2\log_8(2x) + \log_8(x^2 - 2x + 1) = \frac{4}{3}$$
.

7.
$$2\log_8 2^{4x} = 2^{\log_{\sqrt{2}} 2}$$
.

8.
$$10^{\lg(\lg\sqrt{x})} - \lg x + \lg x^2 - 3 = 0$$
.

9.
$$\log_{1-x}(x^2-x-6)^2=4$$
.

10.
$$(\lg x)^2 - 4\lg x = \lg x^2 - 5$$
.

11.
$$\log_2 \frac{x}{8} = \frac{15}{\log_2 \frac{x}{16} - 1}$$
.

12.
$$\lg^{-1} x + 4 \lg x^2 + 9 = 0$$
.

13.
$$2\log_{12}\left(x + \frac{6}{x-5}\right) = \log_{12}\left(\frac{3}{x-2} - \frac{2}{x-3}\right) + 3.$$

14.
$$\sqrt{13 + \frac{4}{\log_x 3}} = 2\log_3(3\sqrt{x})$$

15.
$$\log_{81}(15-7x) \cdot \log_{3-x} 9 = 1$$
.

Уравнения с выборкой корней

1.
$$27^x - 5 \cdot 9^x - 3^{x+2} + 45 = 0$$
, выбрать корни из отрезка $[\log_3 4; \log_3 10]$.

2.
$$8^x - 7 \cdot 4^x - 2^{x+4} + 112 = 0$$
, выбрать корни из отрезка $[\log_2 5; \log_2 11]$.

3.
$$3 \cdot 9^{x - \frac{1}{2}} - 7 \cdot 6^x + 3 \cdot 4^{x+1} = 0$$
, выбрать корни из отрезка [2;3].

4.
$$5 \cdot 4^{x^2 + 4x} + 20 \cdot 10^{x^2 + 4x + 1} - 7 \cdot 25^{x^2 + 4x} = 0$$
, выбрать корни из отрезка [–3; 1].

5.
$$19 \cdot 4^x - 5 \cdot 2^{x+2} + 1 = 0$$
, выбрать корни из отрезка $[-5;-4]$.

6.
$$4^x - 2^{x+3} + 15 = 0$$
, выбрать корни из отрезка $[2; \sqrt{10}]$

7.
$$9^x - 3^{x+2} + 14 = 0$$
, выбрать корни из отрезка $[1; \sqrt{5}]$

8.
$$8^x - 9 \cdot 2^{x+1} + 2^{5-x} = 0$$
, выбрать корни из отрезка $[\log_5 2; \log_5 20]$.

9.
$$1 + \log_2(9x^2 + 5) = \log_{\sqrt{2}} \sqrt{8x^4 + 14}$$
, выбрать корни из отрезка $\left[-1; \frac{8}{9} \right]$.

10.
$$\log_5(2-x) = \log_{25} x^4$$
, выбрать корни из отрезка $\left[\log_9 \frac{1}{82}; \log_9 8\right]$.

11.
$$6\log_8^2 x - 5\log_8 x + 1 = 0$$
, выбрать корни из отрезка [2;2,5].

12.
$$\log_2(x^2 - 4x) = 5$$
, выбрать корни из отрезка $\left[\log_3 0,1;5\sqrt{10}\right]$

13.
$$\log_2^2(x^2) - 16\log_2(2x) + 31 = 0$$
, выбрать корни из отрезка [3;6].

14.
$$\log_2^2 x - 5\log_2 x + 31 = \left(\sqrt{25 - x^2}\right)^2 + x^2$$
.

§ 7. Формулы тригонометрии и их использование для преобразования тригонометрических выражений

Пусть на координатной плоскости дана окружность с центром в точке O = (0; 0) и радиусом, равным единице (рис. 1). Будем такую окружность называть единичной.

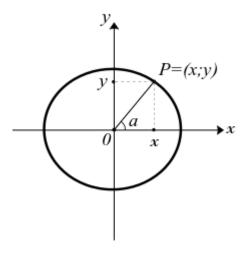


Рис. 1. Единичная окружность

Пусть PO — отрезок, длина которого равна единице (как радиуса единичной окружности). Обозначим через α угол между отрезком PO и положительным направлением оси Ox.

Точка P, как точка плоскости, имеет две координаты: абсциссу x и ординату y (см. рис. 1). Очевидно, что они зависят от угла α .

Определение. Абсиисса x точки P = (x; y) единичной окружности называется косинусом угла α ($x = \cos \alpha$).

Ордината у точки P = (x; y) единичной окружности называется синусом угла $\alpha (y = \sin \alpha)$.

Из определения следует, что:

- 1) если P точка I четверти, то $\cos \alpha > 0$ и $\sin \alpha > 0$;
- 2) если P точка II четверти, то $\cos \alpha < 0$, а $\sin \alpha > 0$;
- 3) если P точка III четверти, то $\cos \alpha < 0$ и $\sin \alpha < 0$;
- 4) если P точка IV четверти, то $\cos \alpha > 0$, а $\sin \alpha < 0$.
- 1. Свойства тригонометрических функций:

$$\sin(-x) = -\sin x,$$
$$\cos(-x) = \cos x,$$

$$tg(-x) = -tgx,$$

$$ctg(-x) = -ctgx,$$

$$\sin(x + 2\pi k) = \sin x, k \in \mathbb{Z},$$

$$\cos(x + 2\pi k) = \cos x, k \in \mathbb{Z},$$

$$tg(x + \pi k) = tgx, k \in \mathbb{Z},$$

$$ctg(x + \pi k) = ctgx, k \in \mathbb{Z}.$$

2. Таблица значений тригонометрических функций.

	Аргумент							
Функция	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
$tg\alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		0	-	0
$ctg\alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0		0	_

Связь между градусной и радианной мерами измерения угла:

$$1^{\circ} = \frac{\pi}{180}$$
 рад.

3. Формулы, связывающие тригонометрические функции одного и того же аргумента:

$$\sin^{2}\alpha + \cos^{2}\alpha = 1,$$

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha}, \qquad ctg\alpha = \frac{\cos\alpha}{\sin\alpha}, \qquad tg\alpha = \frac{1}{ctg\alpha}, \qquad ctg\alpha = \frac{1}{tg\alpha},$$

$$tg\alpha \cdot ctg\alpha = 1,$$

$$1 + tg^{2}\alpha = \frac{1}{\cos^{2}\alpha}, \qquad 1 + ctg^{2}\alpha = \frac{1}{\sin^{2}\alpha}.$$

4. Формулы двойного угла:

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$
,

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha,$$

$$\cos 2\alpha = 2\cos^2 \alpha - 1,$$

$$\cos 2\alpha = 1 - 2\sin^2 \alpha,$$

$$tg \, 2\alpha = \frac{2tg \, \alpha}{1 - tg^2 \alpha}.$$

5. Формулы понижения степени:

$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2},$$
$$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}.$$

6. Формулы сложения аргументов:

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta,$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta,$$

$$tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha \cdot tg\beta}.$$

7. Формулы суммы и разности тригонометрических функций

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2},$$

$$\sin \alpha - \sin \beta = 2\sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2},$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2},$$

$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2},$$

$$tg\alpha \pm tg\beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cdot \cos \beta}.$$

8. Знаки тригонометрических функций по четвертям.

Функция	Четверть						
	I	II	III	IV			
$\sin \alpha$	+	+	_	_			
$\cos \alpha$	+	_	_	+			

Функция	Четверть						
	I	II	III	IV			
tgα	+	_	+	_			
$ctg \alpha$	+	_	+	_			

9. Формулы приведения.

	Аргумент <i>t</i>							
Функция	$\frac{\pi}{2} - \alpha$	$\frac{\pi}{2} + \alpha$	$\pi - \alpha$	$\pi + \alpha$	$\frac{3\pi}{2} - \alpha$	$\frac{3\pi}{2} + \alpha$	$2\pi - \alpha$	$2\pi + \alpha$
sin t	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$	$-\sin \alpha$	$-\cos\alpha$	$-\cos\alpha$	$-\sin \alpha$	$\sin \alpha$
$\cos t$	$\sin \alpha$	$-\sin\alpha$	$-\cos\alpha$	$-\cos \alpha$	$-\sin \alpha$	$\sin \alpha$	$\cos \alpha$	$\cos \alpha$
tgt	$ctg \alpha$	$-ctg\alpha$	$-tg\alpha$	tgα	$ctg\alpha$	$-ctg\alpha$	$-tg\alpha$	tgα
ctgt	tgα	$-tg\alpha$	$-ctg\alpha$	$ctg\alpha$	tgα	$-tg\alpha$	$-ctg\alpha$	$ctg\alpha$

Примеры

1. Вычислить $\cos \alpha$, $tg\alpha$, $ctg\alpha$, если $\sin \alpha = \frac{1}{7}$, $\frac{\pi}{2} < \alpha < \pi$.

Решение.

Используя формулу $\sin^2 \alpha + \cos^2 \alpha = 1$, имеем:

$$\cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \frac{1}{49}, = \frac{48}{49} \Rightarrow \cos \alpha = \pm \sqrt{\frac{48}{49}} = \pm \frac{4\sqrt{3}}{7}.$$

Так как $\frac{\pi}{2} < \alpha < \pi$ (II четверть), то $\cos \alpha < 0 \Rightarrow \cos \alpha = -\frac{4\sqrt{3}}{7}$.

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha} = \frac{1}{7} : \left(-\frac{4\sqrt{3}}{7}\right) = -\frac{1}{4\sqrt{3}} \Rightarrow ctg\alpha = -4\sqrt{3}$$
.

Otbet:
$$-\frac{4\sqrt{3}}{7}$$
; $-\frac{1}{4\sqrt{3}}$; $-4\sqrt{3}$.

2. Вычислить $\sin \alpha$, $\cos \alpha$, $ctg\alpha$, если $tg\alpha = -7$, $\frac{3\pi}{2} < \alpha < 2\pi$.

Решение.

Используя формулу $ctg^2\alpha + 1 = \frac{1}{\sin^2\alpha}$, имеем:

$$\sin^2 \alpha = \frac{1}{1 + ctg^2 \alpha} \Rightarrow \sin \alpha = \pm \frac{1}{\sqrt{1 + ctg^2 \alpha}}.$$

Так как
$$tg\alpha = -7$$
, то $tg\alpha = -\frac{1}{7}$, $\Rightarrow \sin\alpha = \pm \frac{1}{\sqrt{1 + \frac{1}{49}}} = \pm \frac{7}{5\sqrt{2}} = \pm \frac{7\sqrt{2}}{10}$.

Из того, что
$$\alpha \in \left(\frac{3\pi}{2};\pi\right)$$
 (IV четверть), то $\sin \alpha < 0 \Rightarrow \sin \alpha = -\frac{7\sqrt{2}}{10}. \Rightarrow \cos^2 \alpha = \pm \sqrt{1-\sin^2 \alpha} = \pm \sqrt{1-\frac{98}{100}} = \pm \frac{\sqrt{2}}{10}.$

В IV четверти $\cos \alpha > 0 \Rightarrow \cos \alpha = \frac{\sqrt{2}}{10}$.

Otbet:
$$-\frac{7\sqrt{2}}{10}, \frac{\sqrt{2}}{10}, -\frac{1}{7}$$
.

3. Вычислить
$$\frac{tg(\alpha - 0.5\pi) - ctg(\pi - \alpha) + \cos(\alpha - 1.5\pi)}{\sin(\pi + \alpha)}.$$

Решение.

Используя формулы (1) и (9), имеем:

$$tg(\alpha - 0.5\pi) = -tg(\frac{\pi}{2} - \alpha) = -tg\alpha;$$
$$ctg(\pi - \alpha) = -ctg\alpha;$$

$$\cos(\alpha - 1.5\pi) = \cos(1.5\pi - \alpha) = \cos(\frac{3\pi}{2} - \alpha) = -\sin\alpha;$$

$$\sin(\pi + \alpha) = -\sin \alpha.$$

Подставляя в исходное выражение, получаем:

$$\frac{tg(\alpha-0.5\pi)-ctg(\pi-\alpha)+\cos(\alpha-1.5\pi)}{\sin(\pi+\alpha)} = \frac{-ctg\alpha+ctg\alpha-\sin\alpha}{-\sin\alpha} = 1.$$

Ответ: 1.

4. Упростить выражение
$$\frac{\sin\left(\frac{9\pi}{2}-\alpha\right)}{1-\sin(\alpha-\pi)} - \frac{\cos(\alpha-3\pi)}{1-\cos\left(\alpha-\frac{3\pi}{2}\right)}.$$

Решение.

Используя формулы (1) и (9), имеем:

$$\sin\left(\frac{9\pi}{2} - \alpha\right) = \sin\left(4\pi + \frac{\pi}{2} - \alpha\right) = \sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha;$$

$$\sin(\alpha - \pi) = -\sin(\pi - \alpha) = -\sin\alpha;$$

$$\cos(\alpha - 3\pi) = \cos(3\pi - \alpha) = \cos(2\pi + \pi - \alpha) = \cos(\pi - \alpha) = -\cos\alpha;$$

$$\cos\left(\alpha - \frac{3\pi}{2}\right) = \cos\left(\frac{3\pi}{2} - \alpha\right) = -\sin\alpha.$$

Подставляя в исходное выражение, получаем:

$$\frac{\sin\left(\frac{9\pi}{2} - \alpha\right)}{1 - \sin(\alpha - \pi)} - \frac{\cos(\alpha - 3\pi)}{1 - \cos\left(\alpha - \frac{3\pi}{2}\right)} = \frac{\cos\alpha}{1 + \sin\alpha} + \frac{\cos\alpha}{1 - \sin\alpha} =$$

$$= \cos\alpha \left(\frac{1}{1 + \sin\alpha} + \frac{1}{1 - \sin\alpha}\right) = \cos\alpha \left(\frac{1 - \sin\alpha + 1 + \sin\alpha}{(1 + \sin\alpha)(1 - \sin\alpha)}\right) =$$

$$= \frac{2\cos\alpha}{1 - \sin^2\alpha} = \frac{2\cos\alpha}{\cos^2\alpha} = \frac{2}{\cos\alpha}.$$

Otbet: $\frac{2}{\cos \alpha}$.

5. Найти
$$tg\alpha$$
, если $\frac{2\sin\alpha-\cos\alpha}{\sin\alpha-2\cos\alpha}=1$.

Решение.

Из условия задачи $\cos \alpha \neq 0$, так как $tg \alpha = \frac{\sin \alpha}{\cos \alpha}$. Следовательно, дробь

 $\frac{2\sin\alpha-\cos\alpha}{\sin\alpha-2\cos\alpha}$ можно сократить на $\cos\alpha\neq0$:

$$\frac{2\sin\alpha - \cos\alpha}{\sin\alpha - 2\cos\alpha} = \frac{2tg\alpha - 1}{tg\alpha - 2}.$$

Поэтому задачу можно сформулировать так: найти $tg\alpha$, если $\frac{2tg\alpha-1}{tg\alpha-2}=1.$

Из последнего выражения имеем, что $2tg\alpha-1=tg\alpha-2 \Rightarrow tg\alpha=-1$.

Ответ: -1.

6. Вычислить
$$\frac{\sin^2 7^{\circ} - \cos^2 187^{\circ}}{0.5 \cos 14^{\circ}}.$$

Решение.

Используя формулы (9), имеем:

$$\frac{\sin^2 7^\circ - \cos^2 187^\circ}{0.5\cos 14^\circ} = \frac{\sin^2 7^\circ - \cos^2 (180^\circ + 7^\circ)}{\frac{1}{2}(\cos^2 7^\circ - \sin^2 7^\circ)} =$$

$$= \frac{2(\sin^2 7^\circ - \cos^2 7^\circ)}{(\cos^2 7^\circ - \sin^2 7^\circ)} = -2.$$

Ответ: -2.

7. Вычислить
$$\frac{5\cos 70^{\circ} - \sin 160^{\circ}}{\cos 110^{\circ}}$$
.

Решение.

Используя формулы (9), имеем:

$$\frac{5\cos 70^{\circ} - \sin 160^{\circ}}{\cos 110^{\circ}} = \frac{5\cos 70^{\circ} - \sin(90^{\circ} + 70^{\circ})}{\cos(180^{\circ} - 70^{\circ})} = \frac{5\cos 70^{\circ} - \cos 70^{\circ}}{-\cos 70^{\circ}} =$$

$$= -\frac{4\cos 70^{\circ}}{\cos 70^{\circ}} = -4.$$

Ответ: -4.

8. Вычислить $\sin 16^{\circ} + \cos 16^{\circ} tg 37^{\circ}$.

Решение.

Используя формулы (3) и (4), имеем:

$$\sin 16^{\circ} + \cos 16^{\circ} tg \, 37^{\circ} = \sin(90^{\circ} - 74^{\circ}) + \cos(90^{\circ} - 74^{\circ}) tg \, 37^{\circ} =$$

$$= \cos 74^{\circ} + \sin 74^{\circ} tg \, 37^{\circ} = \cos 74^{\circ} + 2\sin 37^{\circ} \cos 37^{\circ} \frac{\sin 37^{\circ}}{\cos 37^{\circ}} =$$

$$= \cos 74^{\circ} + 2\sin^{2} 37^{\circ} = \cos^{2} 37^{\circ} - \sin^{2} 37^{\circ} + 2\sin^{2} 37^{\circ}$$

$$= \cos^{2} 37^{\circ} + \sin^{2} 37^{\circ} = 1.$$

Ответ: 1.

9. Вычислить
$$\frac{\cos\frac{4\pi}{9}}{\sin\frac{19\pi}{18}} + \frac{2\sin\frac{5\pi}{14}}{\cos\frac{8\pi}{7}}.$$

Решение.

Используя формулы (9), имеем:

$$\cos\frac{4\pi}{9} = \cos\frac{8\pi}{18} = \cos\left(\frac{9\pi}{18} - \frac{\pi}{18}\right) = \cos\left(\frac{\pi}{2} - \frac{\pi}{18}\right) = \sin\frac{\pi}{18};$$

$$\sin \frac{19\pi}{18} = \sin \left(\frac{18\pi}{18} + \frac{\pi}{18} \right) = \cos \left(\pi + \frac{\pi}{18} \right) = -\sin \frac{\pi}{18};$$

$$\sin \frac{5\pi}{14} = \sin \left(\frac{7\pi}{14} - \frac{2\pi}{14} \right) = \cos \left(\frac{\pi}{2} - \frac{2\pi}{14} \right) = \cos \frac{\pi}{7};$$

$$\cos \frac{8\pi}{7} = \cos \left(\frac{7\pi}{7} + \frac{\pi}{7} \right) = \cos \left(\pi + \frac{\pi}{18} \right) = -\cos \frac{\pi}{7};$$

Подставляя в исходное выражение, получаем:

$$\frac{\cos\frac{4\pi}{9}}{\sin\frac{19\pi}{18}} + \frac{2\sin\frac{5\pi}{14}}{\cos\frac{8\pi}{7}} = \frac{\sin\frac{\pi}{18}}{-\sin\frac{\pi}{18}} + \frac{2\cos\frac{\pi}{7}}{-\cos\frac{\pi}{7}} = -1 - 2 = -3.$$

Ответ: –3.

Задачи для самостоятельного решения

Вычисления и преобразования

- 1. Найдите значение выражения $\frac{6\cos 207^{\circ}}{\cos 27^{\circ}}$.
- 2. Найдите значение выражения $36\sqrt{6}tg\frac{\pi}{6}\sin\frac{\pi}{4}$.
- 3. Найдите значение выражения $\frac{4\cos 146^{\circ}}{\cos 34^{\circ}}$.
- 4. Найдите значение выражения $\frac{12}{\sin^2 27^\circ + \cos^2 207^\circ}$.
- $5. \ \text{Найдите значение выражения} \ \frac{2\sin(\alpha-7\pi)+\cos\!\left(\frac{3\pi}{2}+\alpha\right)}{\sin(\alpha+\pi)}.$
- 6. Найдите $tg\alpha$, если $\frac{7\sin\alpha + 13\cos\alpha}{5\sin\alpha 17\cos\alpha} = 3$.
- 7. Найдите значение выражения $2\sin\frac{\pi}{12}\cos\frac{\pi}{12}$.
- 8. Найдите $\sin \alpha$, если $\cos \alpha = \frac{\sqrt{7}}{4}$ и $\alpha \in (\pi; 2\pi)$.
- 9. Найдите значение выражения $2tg15^{\circ} \cdot tg105^{\circ}$.
- 10. Найдите значение выражения $\frac{22}{\cos^2 34^\circ + \cos^2 124^\circ}$.

- 11. Найдите значение выражения $\frac{4\cos 146^{\circ}}{\cos 34^{\circ}}$.
- 12. Найдите значение выражения $\frac{6\cos 207^{\circ}}{\cos 27^{\circ}}$.
- 13. Найдите значение выражения $\frac{2\cos 28^{\circ}}{\cos 152^{\circ}}$.
- 14. Найдите значение выражения $\sqrt{200}\cos^2\frac{5\pi}{8} \sqrt{50}$.
- 15. Найдите значение выражения $\frac{4\sin 17^{\circ}\cos 17^{\circ}}{\cos 56^{\circ}}$.
- 16. Найдите $tg\alpha$, если $\sin\alpha = \frac{2\sqrt{29}}{29}$ и $\alpha \in \left(0; \frac{\pi}{2}\right)$.
- 17. Найдите значение выражения $-50tg\,27^{\circ}\cdot tg\,117^{\circ}$.
- 18. Найдите $\frac{5\sin 4\alpha}{3\cos 2\alpha}$, если $\sin 2\alpha = 0.6$.
- 19. Найдите $\cos \alpha$, если $\sin \alpha = \frac{\sqrt{7}}{4}$ и $\alpha \in \left(0; \frac{\pi}{2}\right)$.
- 20. Найдите $\sin \alpha$, если $\cos \alpha = \frac{\sqrt{91}}{10}$ и $\alpha \in \left(0; \frac{\pi}{2}\right)$.
- 21. Найдите $\sin \alpha$, если $\cos \alpha = -\frac{2\sqrt{6}}{5}$ и $180^{\circ} < \alpha < 270^{\circ}$.
- 22. Найдите значение выражения $\frac{48 \sin 386^{\circ}}{\sin 26^{\circ}}$.
- 23. Найдите значение выражения $-18\sqrt{3}tg$ 390°.
- 24. Найдите $\sin \alpha$, если $\cos \alpha = -\frac{2\sqrt{6}}{5}$ и $270^{\circ} < \alpha < 360^{\circ}$.

§ 8. Тригонометрические уравнения

Простейшим тригонометрическим уравнением называется уравнение вида $\sin x = a$, $\cos x = a$, tgx = a, ctgx = a где a – некоторое действительное число. Решаются они проще всего с помощью единичной окружности. Разберем несколько примеров.

Примеры

Решить уравнения:

1.
$$2\cos^2 x + 7\sin x - 5 = 0$$
.

Решение.

Так как $\cos^2 x = 1 - \sin^2 x$, то уравнение можно переписать как

$$2(1-\sin^2 x) + 7\sin x - 5 = 0 \Longrightarrow$$

$$-2\sin^2 x + 7\sin x - 3 = 0 \Longrightarrow$$

$$2\sin^2 x - 7\sin x + 3 = 0 \Longrightarrow$$

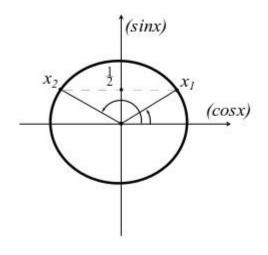


Рис. 2

Пусть
$$\sin x = t$$
, $-1 \le t \le 1 \Rightarrow$

$$\Rightarrow 2t^2 - 7t + 3 = 0 \Rightarrow t_1 = \frac{1}{2}; \quad t_2 = 3 > 1 - \text{посто-}$$
(сохх) ронний корень $\Rightarrow t = \frac{1}{2} \Rightarrow \sin x = \frac{1}{2}$.

Строим единичную окружность (рис. 2), на которой отмечаем соответствующее значение синуса:

$$\begin{bmatrix} x_1 = \frac{\pi}{6} + 2\pi k, \\ x_2 = \frac{5\pi}{6} + 2\pi k, & k \in \mathbb{Z} \end{bmatrix}$$

Other:
$$x = \frac{\pi}{6} + 2\pi k$$
, $x = \frac{5\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$.

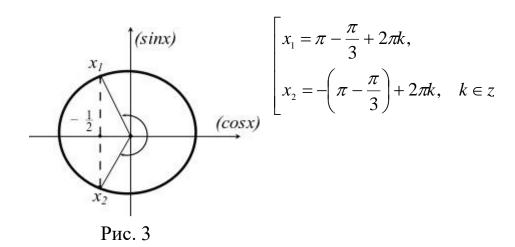
2.
$$2\cos 2x = 4\sin\left(\frac{\pi}{2} + x\right) + 1$$
.

Решение.

Так как $\sin\left(\frac{\pi}{2} + x\right)\cos x$, а $\cos 2x = 2\cos^2 x - 1$, то перепишем уравнение:

$$2(2\cos^2 x - 1) = 4\cos x + 1 \Rightarrow$$
 $4\cos^2 x - 2 - 4\cos x - 1 = 0 \Rightarrow$
 $4\cos^2 x - 4\cos x - 3 = 0$
Пусть $\cos x = t$, $-1 \le t \le 1 \Rightarrow$
 $\Rightarrow 4t^2 - 4t - 3 = 0 \Rightarrow t_1 = -\frac{1}{2}$; $t_2 = \frac{3}{2} > 1$ – посторонний корень
 $\Rightarrow t = -\frac{1}{2} \Rightarrow \cos x = -\frac{1}{2}$.

Строим единичную окружность (рис. 3), на которой отмечаем соответствующее значение косинуса.



Otbet:
$$x = \pm \frac{2\pi}{3} + 2\pi k$$
, $k \in \mathbb{Z}$.

3.
$$2\cos x \cos \left(x + \frac{\pi}{2}\right) + 2\sin x \sin \left(x - \frac{\pi}{2}\right) + 1 = 0$$
.

Решение.

Так как
$$\cos\left(x + \frac{\pi}{2}\right) = -\sin x$$
, а $\sin\left(x - \frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2} - x\right) = -\cos x$, то уравнение можно переписать как $-2\cos x \sin x - 2\sin x \cos x + 1 = 0$. Так как $2\sin x \cos x = \sin 2x$, то имеем $-2\sin 2x + 1 = 0 \Rightarrow \sin 2x = \frac{1}{2}$.

Из примера 1 следует, что
$$\begin{bmatrix} 2x = \frac{\pi}{6} + 2\pi k, & x = \frac{\pi}{12} + \pi k, \\ 2x = \frac{5\pi}{6} + 2\pi k, \Rightarrow x_2 = \left(\frac{5\pi}{12}\right) + \pi k, \\ k \in \mathbb{Z} \qquad k \in \mathbb{Z} \end{cases}$$

Otbet:
$$x = \frac{\pi}{12} + \pi k$$
, $x = \frac{5\pi}{12} + \pi k$, $k \in \mathbb{Z}$.

4. $2\sin 2x + 2\sin x - 3 = 6\cos x$.

Решение.

Так как $\sin 2x = 2\sin x \cos x$, то уравнение можно переписать как $4\sin x \cos x + 2\sin x - 3 - 6\cos x = 0$.

Сгруппируем первые два и последние два слагаемых в левой части:

$$2\sin x(\cos 2x + 1) - 3(1 + 2\cos x) = 0 \Longrightarrow$$

$$(2\cos 2x + 1)(2\sin x - 3) = 0 \Longrightarrow$$

$$(\cos 2x + 1) = 0$$
 или $2\sin x - 3 = 0$.

Тогда $\cos x=-\frac{1}{2}$, а $\sin x=\frac{3}{2}>1$. Поэтому только $\cos x=-\frac{1}{2}$. Из примера 2 следует, что $x=\pm\frac{2\pi}{3}+2\pi k$, $k\in z$

Otbet:
$$x = \pm \frac{2\pi}{3} + 2\pi k$$
, $k \in \mathbb{Z}$.

5.
$$1 - 4\sin x \cos x - 6\cos^2 x = 0$$
.

Решение.

Так как $1 = \sin^2 x + \cos^2 x$, то уравнение можно переписать как $\sin^2 x + \cos^2 x - 4\cos x \sin x - 6\cos^2 x = 0 \Rightarrow \sin^2 x - 5\cos^2 x - 4\sin x \cos x = 0$.

Разделим обе части уравнения $a\cos^2 x$. Тогда имеем

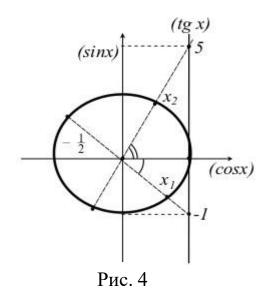
$$\frac{\sin^2 x}{\cos^2 x} - 5 - \frac{4\sin x \cos x}{\cos^2 x} = 0 \Rightarrow$$

$$tg^2 x - 4tgx - 5 = 0$$
Пусть $2tgx = t \Rightarrow t^2 - 4t - 5 = 0 \Rightarrow t_1 = -1, t_2 = 5 \Rightarrow$

$$tgx = -1,$$

$$tgx = 5,$$

Используя единичную окружность (рис. 4), имеем:



$$x_1 = -\frac{\pi}{4} + \pi k, \quad k \in \mathbb{Z}$$
$$x_2 = \operatorname{arctg} 5 + \pi l, \quad l \in \mathbb{Z}$$

Other:
$$x = -\frac{\pi}{4} + \pi k$$
, $k \in \mathbb{Z}$, $x = arctg \ 5 + \pi l$, $l \in \mathbb{Z}$.

Задачи для самостоятельного решения

Решить уравнения:

1.
$$2\cos 2x + 4\sqrt{3}\cos x - 7 = 0$$
.

2.
$$2\cos 2x + 4\cos\left(\frac{3\pi}{2} - x\right) + 1 = 0.$$

3.
$$8\sin^2 x + 2\sqrt{3}\cos x + 1 = 0$$
.

$$4. \cos 2x = \sin \left(x + \frac{\pi}{2} \right).$$

5.
$$\sin 2x + 2\sin^2 x = 0$$
.

6.
$$2\sin^2 x - \sqrt{3}\sin 2x = 0$$
.

7.
$$\cos 2x - 3\cos x + 2 = 0$$
.

8.
$$\cos 2x + 3\cos x - 2 = 0$$
.

9.
$$3\cos 2x - 5\sin x + 1 = 0$$
.

10.
$$\cos 2x - 5\sqrt{2}\cos x - 5 = 0$$
.

11.
$$\cos 2x + \sqrt{2} \sin \left(\frac{\pi}{2} + x \right) + 1 = 0.$$

$$12. \cos\left(\frac{3\pi}{2} + 2x\right) = \cos x.$$

13.
$$6\cos^2 x - 7\cos x - 5 = 0$$
.

14.
$$\cos 2x + \sin^2 x - 0.5 = 0$$
.

15.
$$6\sin^2 x + 5\sin\left(\frac{\pi}{2} - x\right) - 2 = 0.$$

16.
$$4\cos^2 x + 4\cos\left(\frac{\pi}{2} + x\right) - 1 = 0.$$

17.
$$\cos 2x + \sin^2 x - 0.25 = 0$$
.

$$18. \sin 2x = \sin \left(\frac{\pi}{2} + x\right).$$

19.
$$\sin 2x + \sqrt{3} \sin x = 0$$
.

20.
$$tg^2x + (1 + \sqrt{3})tgx + \sqrt{3} = 0$$
.

Уравнения смешанного типа

1.
$$15^{\cos x} = 3^{\cos x} \cdot 5^{\sin x}$$
, выбрать корни из отрезка $\left[5\pi, \frac{13\pi}{2} \right]$.

2.
$$\frac{3^{\cos x}}{9^{\cos^2 x}} = 4^{2\cos^2 x - \cos x}$$
, выбрать корни из отрезка $\left[-\frac{3\pi}{2}, \frac{\pi}{6} \right]$.

3.
$$(tg^2x-1)\sqrt{13\cos x}=0$$
, выбрать корни из отрезка $\left[-3\pi,-\frac{3\pi}{2}\right]$.

4.
$$4^{\sin x} + 4^{-\sin x} = \frac{5}{2}$$
, выбрать корни из отрезка $\left[\frac{5\pi}{2}, 4\pi\right]$.

5.
$$\log_2(\cos x + \sin 2x + 8) = 3$$
, выбрать корни из отрезка $\left[\frac{3\pi}{2}, 3\pi\right]$.

$$6.\ 2\log_3^2(2\cos x) - 5\log_3(2\cos x) + 2 = 0, \quad \text{выбрать} \quad \text{корни} \quad \text{из} \quad \text{отрезка} \\ \left[\pi, \frac{5\pi}{2}\right].$$

7.
$$2^{4\cos x} + 3 \cdot 2^{2\cos x} - 10 = 0$$
, выбрать корни из отрезка $\left[\pi, \frac{5\pi}{2}\right]$.

8.
$$\frac{(tgx + \sqrt{3})\log_{13}(2\sin^2 x)}{\log_{31}(\sqrt{2}\cos x)} = 0.$$

9.
$$9 \cdot 81^{\cos x} - 28 \cdot 9^{\cos x} + 3 = 0$$
, выбрать корни из отрезка $\left[\frac{5\pi}{2}, 4\pi \right]$.

$$10.\ 3\log_8^2(\sin x) - 5\log_8(\sin x) - 2 = 0$$
, выбрать корни из отрезка $\left[-\frac{7\pi}{2}, -2\pi \right]$.

- 11. $0,4^{\sin x} + 2,5^{\sin x} = 2$, выбрать корни из отрезка $\left[7\pi, \frac{7\pi}{2}\right]$.
- 12. $\log_9 \left(3^{2x} + 5\sqrt{2} \sin x 6 \cos^2 x 2 \right) = x$, выбрать корни из отрезка $\left[-2\pi, -\frac{\pi}{2} \right]$.
 - 13. $\frac{\log_2^2(\sin x) + \log_2(\sin x)}{2\cos x \sqrt{3}} = 0$, выбрать корни из отрезка $\left[\frac{\pi}{2}, 2\pi\right]$.
 - 14. $\cos x + \sqrt{\frac{2 \sqrt{2}}{2} \cdot (\sin x + 1)} = 0$, выбрать корни из отрезка

$$\left[-\frac{11\pi}{2}, -4\pi\right].$$

- 15. $\frac{\sqrt{3}tgx+1}{2\sin x-1}$ = 0, выбрать корни из отрезка $\left[\frac{9\pi}{2},6\pi\right]$.
- 16. $\frac{3ctg^2x + 4ctgx}{5\cos^2 x 4\cos x} = 0$, выбрать корни из отрезка $\left[\frac{5\pi}{2}, 5\pi\right]$.
- 17. $\frac{\sin 2x}{\cos \left(x + \frac{3\pi}{2}\right)} = 1$, выбрать корни из отрезка $\left[-4\pi, -\frac{5\pi}{2}\right]$.
- 18. $\frac{2\sin^2 x \sin x}{2\cos x \sqrt{3}} = 0$, выбрать корни из отрезка $\left[\frac{3\pi}{2}, 3\pi\right]$.
- 19. $\frac{2\cos x \sqrt{3}}{\sqrt{7}\sin x} = 0$, выбрать корни из отрезка $\left[\pi, \frac{5\pi}{2}\right]$.
- 20. $\sin \frac{x}{3} = \left(\sqrt{25 x^2}\right)^2 + x^2 25$.

Глава 3. Функции и графики

§ 1. Линейная функция

Функция, заданная формулой $y = k \cdot x + b$, где k и b — некоторые числа, называется линейной.

Область определения линейной функции служит множество R всех действительных чисел, так как выражение $k \cdot x + b$ имеет смысл при любых значениях x.

Графиком линейной функции $y = k \cdot x + b$ является прямая линия.

Для построения прямой вида $y=k\cdot x+b$ достаточно задать координаты двух точек, например $A(0,b),\,B(-\frac{b}{k}\,;\,0),\,$ где $k\neq 0$.

Коэффициент k характеризует угол, который образует прямая $y = k \cdot x$ с положительным направлением оси Ox. Если k > 0, то этот угол острый; если k < 0, тупой; если k = 0, то прямая параллельна оси Ox.

Точка с координатами (0, b) – точка пересечения прямой с осью Oy. Удобно вычисления оформлять в виде таблицы:

x	0	-b/k
у	b	0

Получаем две точки A(0,b) и $B(-\frac{b}{k},0)$. Через них проводим прямую (рис. 5).

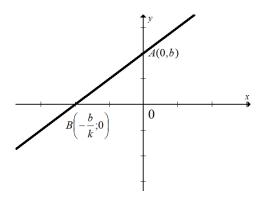
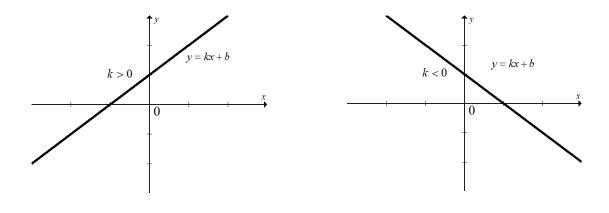


Рис. 5. График линейной функции $y = k \cdot x + b$



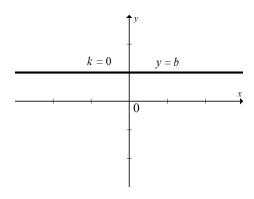


Рис. 6. График линейной функции при различных значениях k

Пример

Построить график функции y = x + 1.

Pешение. Здесь k = 1 и b = 1.

Построим таблицу:

x	0	-1
у	1	0

По двум точкам с координатами A(0, 1) и B(-1, 0) проводим прямую (рис. 7).

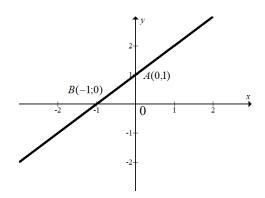


Рис. 7. График функции y = x + 1

§ 2. Обратная функция

Если переменная y пропорциональна переменной x, то эта зависимость выражается формулой $y = k \cdot x$, где $k \neq 0$ — коэффициент пропорциональности.

Если переменная y обратно пропорциональна переменной x, то эта зависимость выражается формулой $y=\frac{k}{x}$, где $k\neq 0$ — коэффициент обратной пропорциональности.

Функция, заданная формулой $y = \frac{k}{x}$, называется обратной функцией.

Область определения функции $y = \frac{k}{x}$ служит множество всех чисел, отличных от нуля, т.е. $x \in (-\infty;0) \cup (0;+\infty)$.

Графиком обратной пропорциональности $y = \frac{k}{x}$ является кривая, состоящая из двух ветвей, симметричных относительно начала координат. Такая кривая называется *гиперболой* (рис. 8).

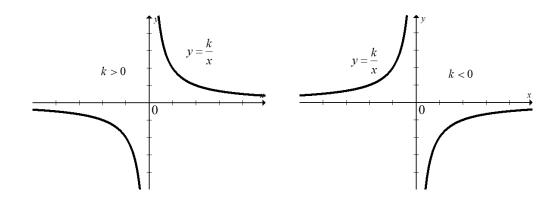


Рис. 8. Гипербола для различных значений k

Если k > 0, то ветви гиперболы расположены в I и III координатных четвертях; если k < 0, то ветви гиперболы расположены в II и IV координатных четвертях.

Заметим, что гипербола не имеет общих точек с осями координат, а лишь сколь угодно близко к ним приближается.

§ 3. Квадратичная функция

Функция, заданная формулой $y = ax^2 + bx + c$, где x и y – переменные, а a, b и c – заданные числа, причем $a \neq 0$, называется $\kappa badpamuчной$.

Областью определения функции служит множество R.

Графиком квадратичной функции $y = ax^2 + bx + c$ является *парабола*. Если a > 0, то ветви параболы направлены вверх; если a < 0, то ветви параболы направлены вниз. Осью симметрии параболы служит прямая $x = \frac{-b}{2a}$.

Координаты вершины параболы определяются по следующим формулам:

$$x_0 = \frac{-b}{2a}$$
, $y_0 = y(x_0) = \frac{4ac - b^2}{4a}$.

Квадратичную функцию $y = ax^2 + bx + c$ всегда можно привести к виду $y = a(x+k)^2 + p$ путем выделения полного квадрата.

Точки пересечения с осью Ох определяются с помощью формул

$$x_1 = \frac{-b + \sqrt{D}}{2a}$$
, $x_2 = \frac{-b - \sqrt{D}}{2a}$, где $D = b^2 - 4ac$.

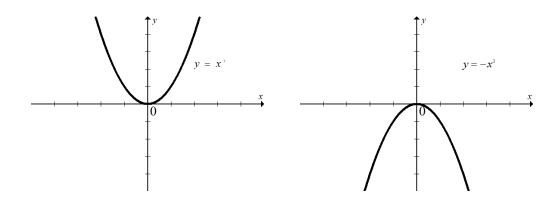


Рис. 9. Параболы при D=0

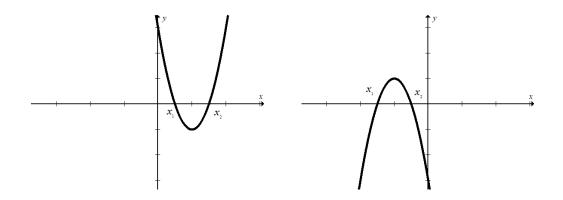


Рис. 10. Параболы при D>0

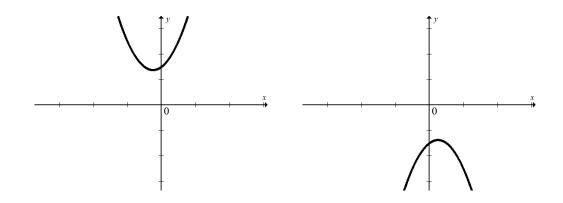


Рис. 11. Параболы при D < 0

§ 4. Функция $y = \sqrt{x}$

Областью определения функции $y = \sqrt{x}$ служит множество всех неотрицательных чисел, т.е. $x \in [0; +\infty)$.

Графиком функции $y = \sqrt{x}$ является кривая, представляющая собой ветвь параболы относительно оси Ox (рис. 12).

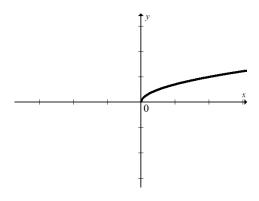


Рис. 12. График функции $y = \sqrt{x}$

Заметим, что кривая $y = \sqrt{x}$ имеет одну общую точку с осями координат с координатами (0,0).

§ 5. Показательная функция

Функция, заданная формулой вида $y = a^x$, где a — некоторое положительное число, не равное единице, называется *показательной*.

Функция $y = a^x$ при a > 1 обладает следующими свойствами:

- а) область определения множество всех действительных чисел;
- б) область значений множество всех положительных чисел;
- в) функция возрастает;
- г) при x = 0 значение функции равно 1;
- д) если x > 0, то $a^x > 1$;
- е) если x < 0, то $0 < a^x < 1$ (рис. 13).

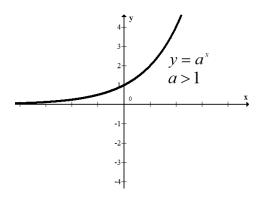


Рис. 13. График показательной функции при a > 1

Функция $y = a^x$ при 0 < a < 1 обладает следующими свойствами:

- а) область определения множество всех действительных чисел;
- б) область значений множество всех положительных чисел;
- в) функция убывает;
- Γ) при x = 0 значение функции равно 1;
- д) если x > 0, то $0 < a^x < 1$;
- е) если x < 0, то $a^x > 1$ (рис. 14).

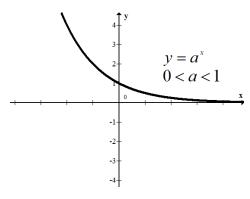


Рис. 14. График показательной функции при 0 < a < 1

Частный случай показательной функции $y=a^x$, где a=e, продемонстрирован на рис. 15.

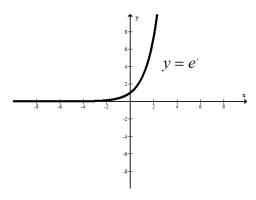


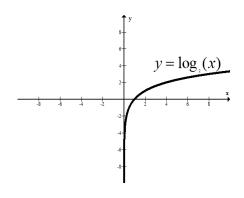
Рис. 15. Частный случай показательной функции

§ 6. Логарифмическая функция

Функция, заданная формулой вида $y = \log_a x$, где a — некоторое положительное число, не равное единице, называется логарифмической.

Показательная и логарифмическая функции при одном и том же основании являются взаимно обратными функциями.

График логарифмической функции $y = \log_a x$ можно построить, воспользовавшись тем, что функция $y = \log_a x$ — обратная показательной функции $y = a^x$. Поэтому достаточно построить график функции $y = a^x$, а затем отобразить его симметрично относительно прямой y = x. На рис. 16 изображен график функции $y = \log_a x$ при a > 1, а на рис. 17 — график функции $y = \log_a x$ при 0 < a < 1.



 $y = \log_{0.5}(x)$ $y = \log_{0.5}(x)$

Рис. 16. График функции $y = \log_a x$ при a > 1

Рис. 17. График функции $y = \log_a x$ при 0 < a < 1

Свойства функции $y = \log_a x$ при a > 1:

- а) область определения множество всех положительных чисел;
- б) область значений множество всех действительных чисел;
- в) функция возрастает;
- Γ) при $x = 1 \log_a x = 0$;
- д) если 0 < x < 1, то $\log_a x < 0$;
- е) если x > 1, то $\log_a x > 0$.

Свойства функции $y = \log_a x$ при a > 1:

- а) область определения множество всех положительных чисел;
- б) область значений множество всех действительных чисел;
- в) функция убывает;

- Γ) при $x = 1 \log_a x = 0$;
- д) если 0 < x < 1, то $\log_a x > 0$;
- e) если x > 1, то $\log_a x < 0$.

§ 7. Преобразование графиков

Вспомогательные приемы построения графика функции

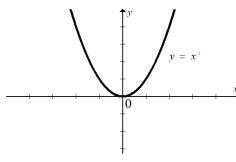


Рис. 18. График функции $y = x^2$

1. Параллельный перенос оси ординат Oy.

Пусть y = f(x+a), где y = f(x) — известная функция.

Для примера рассмотрим функцию $f(x) = x^2 - \text{парабола}.$

Рассмотрим функцию $f(x) = (x+3)^2 -$ парабола. Строим $f(x) = x^2$, но ось Oy сдвигаем на 3 единицы вправо (рис. 19).

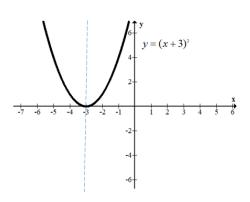


Рис. 19. График функции $y = (x+3)^2$

Рассмотрим функцию $f(x) = (x-3)^2 -$ парабола. Строим $f(x) = x^2$, но ось Oy сдвигаем на 3 единицы влево (рис. 20).

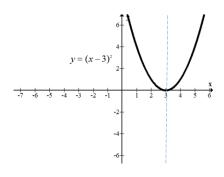


Рис. 20. График функции $y = (x-3)^2$

2. Параллельный перенос оси абсцисс Ох.

Пусть y = f(x) + b, где y = f(x) – известная функция.

Для примера опять рассмотрим функцию $f(x) = x^2 -$ парабола.

Рассмотрим функцию $f(x) = x^2 + 2$. Строим $f(x) = x^2$, но ось Ox сдвигаем на 2 единицы вниз (рис. 21).

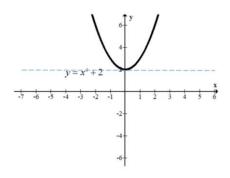


Рис. 21. График функции $y = x^2 + 2$

Рассмотрим функцию $f(x) = x^2 - 2$. Строим $f(x) = x^2$, но ось Oy сдвигаем на 2 единицы вверх (рис. 22).

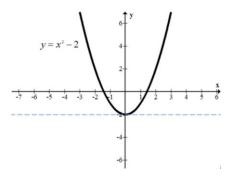


Рис. 22. График функции $y = x^2 - 2$

Замечание. Надо иметь в виду, что сдвиг оси Oy производится на величину a — «добавку» к положительному числу x. Но если задан будет y = f(-x+a), то вначале надо сделать преобразование y = f(-(x-a)), и принимаем за «известную» функцию y = f(-(x)).

3. Зеркальное отображение относительно оси Ox (рис. 23).

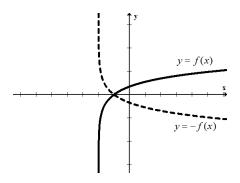


Рис. 23. Графики функций y = f(x) и y = -f(x)

Пример

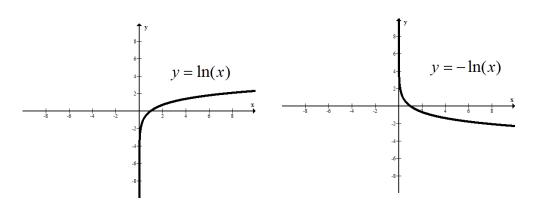


Рис. 24. Графики функций y = ln(x) и y = -ln(x)

4. Растяжение или сжатие графика по оси Oy графика функции $y = m \cdot f(x)$.

Если m > 1, происходит сжатие в m раз относительно оси Oy (рис. 25).

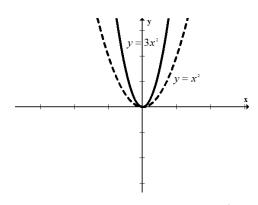


Рис. 25. Графики функций $y = x^2$ и $y = 3x^2$

Если 0 < m < 1, происходит растяжение в m раз относительно оси Oy (рис. 26).

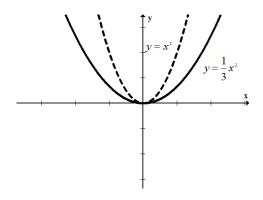


Рис. 26. Графики функций $y = x^2$ и $y = \frac{1}{3}x^2$

Построение графиков функции, содержащих знак модуля

1.
$$y = |x|$$
:
 $y = |x| = \begin{cases} x, & npu & x \ge 0, \\ -x, & npu & x < 0. \end{cases}$

Так выглядят функции y = x и y = -x по отдельности (рис. 27).

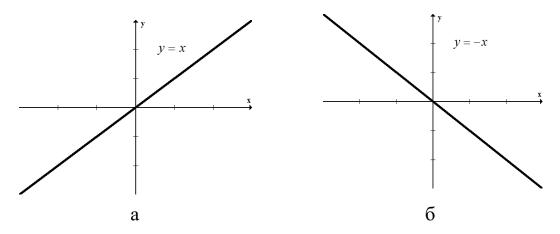


Рис. 27. Графики функций y = x (a) и y = -x (б)

Чтобы изобразить функцию y=|x|, необходимо отрицательную часть графика функции y=x отобразить относительно оси Ox (рис. 28). Функция y=|x| — это четная функция, симметричная относительно оси Oy.

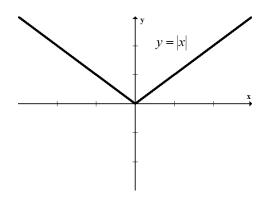


Рис. 28

2. y = |x - 3|. Так же как в случае с параллельным переносом оси Oy из раздела «Вспомогательные приемы построения графика функции», будем перемещать ось Oy (рис. 29).

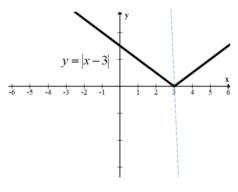


Рис. 29

3. y = |x + 3| + 2. Перемещаем оси *Ox* и *Oy* (рис. 30).

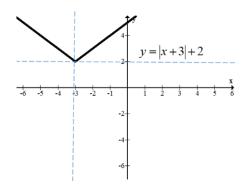


Рис. 30

Построение графика функции y = |f(x)|

По определению модуля

$$|f(x)| = \begin{cases} f(x) & \text{оля mex } x, \text{где} & f(x) \ge 0, \\ -f(x) & \text{оля mex } x, \text{где} & f(x) < 0. \end{cases}$$

Чтобы построить график функции y = |f(x)|, надо сначала построить график функции y = f(x), а затем участки этого графика, лежащие ниже оси Ox, зеркально отразить от этой оси (рис. 31).

Пример

$$y = \left| x^2 + 3x - 10 \right|.$$

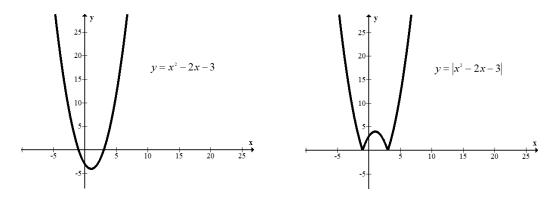


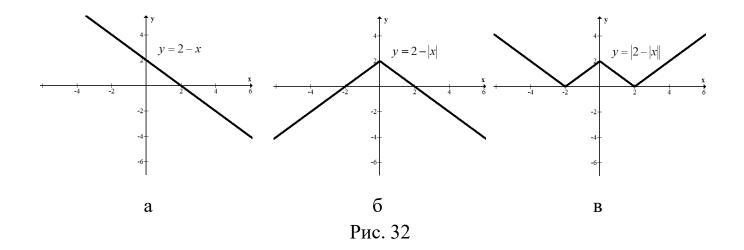
Рис. 31

Построение графика функции y = |f(|x|)|

- 1. Построить график функции y = f(x) для $x \ge 0$.
- 2. Отобразить этот график симметрично относительно оси Oy y = f(|x|) четная функция.
- 3. Участки графика функции y = f(|x|), расположенные ниже оси Ox, отобразить зеркально от этой оси.

Пример

y = |2 - |x|| — график этой функции можно построить двумя способами. Первый способ показан на рис. 32.



Второй способ продемонстрирован на рис. 33.

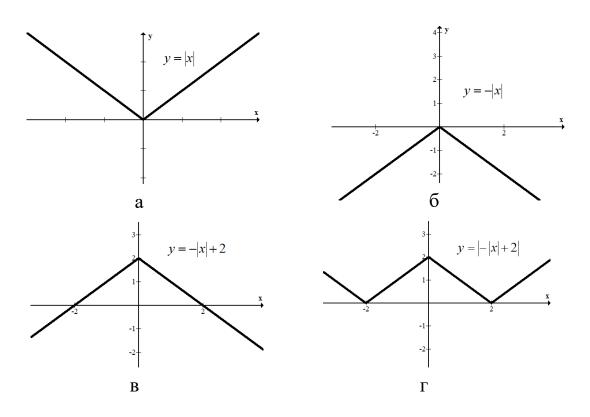


Рис. 33

Задачи для самостоятельного решения

Построить график функций:

1.
$$y = 2x - 6$$
.

2.
$$y = 20 - 3x$$
.

3.
$$3x + 2y = 5$$
.

4.
$$x = 3y + 10$$
.

5.
$$y = 0.5 - 0.3x$$
.

6.
$$x + y = 5$$
.

7.
$$y = \frac{2}{x}$$
.

8.
$$y = \frac{-6}{x}$$
.

9.
$$y = 2\sqrt{x}$$
.

10.
$$y = \sqrt{\frac{x}{3}}$$
.

11.
$$y = \sqrt{x} + 6$$
.

12.
$$y = -x^2 + 2$$
.

13.
$$y = -(x-3)^2 + 2$$
.

14.
$$y = (x+5)^2 - 1$$
.

15.
$$y = (x + 0.5)^2$$
.

16.
$$y = -2(x-2)^2$$
.

17.
$$y = 2x^2 + 6$$
.

18.
$$y = 2x^2 + x$$
.

19.
$$y = \frac{(x+3)^2}{5}$$
.

20.
$$y = \frac{x^2}{4} - 4$$
.

21.
$$x^2 - 24y = 100$$
.

22.
$$y = 2x^2 - 4x + 1$$
.

23.
$$y = x^2 - 4x + 5$$
.

24.
$$y = -x^2 + 6x - 5$$
.

25.
$$y = 2^x$$
.

26.
$$y = 2e^x + 1$$
.

27.
$$y = -(0.5^x) + 1$$
.

28.
$$y = \left(\frac{1}{3}\right)^x + 6$$
.

29.
$$y = -10^x + 6$$
.

30.
$$y = \log_3 x$$
.

31.
$$y = 2 - \log_{0.5} x$$
.

32.
$$y = \ln x + 5$$
.

33.
$$y = 5 - \lg x$$
.

34.
$$y = -2|x-1|$$
.

35.
$$y = |x/2 + 1|$$
.

36.
$$y = \frac{|x+6|}{4}$$
.

37.
$$y = -0.2 \cdot |1 - x|$$
.

38.
$$y = 5|x+1|+1$$
.

39.
$$y = |2x + 3| - 5$$
.

40. Построить график функции

$$y = \begin{cases} -\frac{1}{2}x + 3, & ec\pi u \quad x \ge 2, \\ x - 1, & ec\pi u \quad x < 2. \end{cases}$$

41. Построить график функции

$$y = \begin{cases} \frac{1}{2}x - 1, & ec\pi u \quad x \ge 4, \\ -x + 5, & ec\pi u \quad x < 4. \end{cases}$$

- 42. Построить график функции $y = |x^2 + 6x + 5|$ и найти, при каких значениях m прямая y = m пересекает построенный график ровно в трех точках.
- 43. Построить график функции $y = -(\sqrt{-x^2 2x})^2$ и определить, при каких значениях k прямая $y = kx \frac{1}{4}$ имеет с графиком ровно две общие точки.
 - 44. Построить график функции

$$y = \begin{cases} x^2 + 6x + 7, & ecnu \quad x \ge -4, \\ x + 10, & ecnu \quad x < -4. \end{cases}$$

Определить, при каких значениях m прямая y = m имеет с графиком ровно две общие точки.

45. Построить график функции

$$y = \begin{cases} x^2 - 2x + 4, & ec\pi u \quad x \ge -1, \\ -\frac{9}{x}, & ec\pi u \quad x < -1. \end{cases}$$

Определить, при каких значениях m прямая y = m имеет с графиком ровно две общие точки.

46. Построить график функции

$$y = \frac{1}{2} \left(\left| \frac{x}{4} - \frac{4}{x} \right| + \frac{x}{4} + \frac{4}{x} \right).$$

Определить, при каких значениях m прямая y = m имеет с графиком ровно две общие точки.

Ответы

Преобразование числовых и алгебраических выражений

Действия с дробями

Действия с обыкновенными дробями

1. 0,2. 2. 1,35. 3. 3,91. 4. -0,3. 5. 1,15. 6. $\frac{1}{9}$: 7. $8\frac{29}{36}$: 8. $2\frac{67}{75}$: 9. 43, 375. 10. $20\frac{1}{12}$: 11. $35\frac{35}{36}$: 12. $13\frac{89}{96}$: 13. $6\frac{5}{6}$: 14. 126. 15. 0,8. 16. -2. 17. 10. 18. 31,6. 19. 79,2. 20. 0,44.

Действия с десятичными дробями

1. 1,6. **2**. 2,25. **3**. 1. **4**. 55. **5**. 3,75. **6**. 3,2. **7**. 12,5. **8**. 10. **9**. 0,95. **10**. 80,625. **11**. 8. **12**. 5. **13**. 4,4. **14**. 270. **15**. 34,3.

Сравнение чисел

Вычисление значений степенных выражений

Степени и их свойства

1. -30. **2.** 35. **3.** 20. **4.** 105. **5.** -820. **6.** -320. **7.** -720. **8.** -790. **9.** -550. **10.** 0,5604. **11.** -3,86. **12.** -3786,7. **13.** 1951,1. **14.** 0,000196. **15.** 0,0000335. **16.** 0,000026. **17.** 0,2. **18.** $\frac{1}{49}$. **19.** 3328. **20.** 7. **21.** 121. **22.** 54. **23.** 5. **24.** 49. **25.** 9. **26.** 1,5. **27.** 1,4. **28.** 7. **29.** 5. **30.** 20. **31.** 7. **32.** 64. **33.** $\frac{8}{9}$. **34.** 5. **35.** 5. **36.** 13,5. **37.** 0,25. **38.** 0,0001. **39.** 0,5. **40.** 88. **41.** 16. **42.** 3,2. **43.** 0,8. **44.** 150. **45.** -0,5. **46.** 6. **47.** 8. **48.** 49. **49.** 121. **50.** 2,5. **51.** 144. **52.** 3,5. **53.** 27. **54.** 36. **55.** 15. **56.** 2. **57.** 96. **58.** 2,4. **59.** 4. **60.** 80. **61.** 126.

Преобразование числовых иррациональных выражений

1. 18. 2. $\frac{2}{3}$. 3. 24. 4. 2. 5. 90. 6. 220. 7. 198. 8. 5. 9. 120 $\sqrt{3}$. 10. 2(12 + $\sqrt{23}$). 11. 2(43 - $\sqrt{85}$). 12. 243. 13. 5. 14. 4. 15. 2. 16. 42. 17. -15. 18. 7. 19. 6. 20. 6. 21. 7. 22. 2. 23. 2. 24. 5. 25. 1. 26. 15. 27. 7. 28. 2.

Преобразование буквенных иррациональных выражений

1. 49. **2.** 0,8. **3.** 25. **4.** 32. **5.** 3. **6.** 4. **7.** 12. **8.** 9. **9.** 0,25. **10.** 4. **11.** 5. **12.** 12. **13.** 0. **14.** 1.

Преобразование алгебраических выражений

1. $16a^2 + 24ab - 9b^2$. 2. $4x^2 + 28xy - 49y^2$. 3. $b^6(25 - 40b - 16b^2)$. 4. $27y^6 + 27y^2 + 15z^6 + 125z^9$. 5. $64b^32 - 16b^2c^2 + \frac{4bc^4}{3} - \frac{c^6}{27}$. 6. (2x - y)(2x + y). 7. (4a - b)(4a + b). 8. $(x - \sqrt{3}y^3)(x + \sqrt{3}y^3)(x^2 + 3y^6)$. 9. (x - 3)(x + 5). 10. (7 - c)(3 + c). 11. (y - z - 3)(y + z - 1). 12. 3a(a - 2b). 13. $(3 - a)(9 + 3a + a^2)$. 14. $(4 + b)(16 - 4b + b^2)$. 15. $(4 + xy)(16 - 4xy + x^2y^2)$. 16. $(3x - 2y)(9x^2 + 6xy + 4y^2)$. 17. $(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})$ или $(\sqrt[3]{x} - \sqrt[3]{y})(\sqrt[3]{x^2} + \sqrt[3]{xy} + \sqrt[3]{y^2})$. 18. $(2\sqrt{x} - 3\sqrt{y})(2\sqrt{x} + 3\sqrt{y})$. 19. $(\sqrt[3]{x} + \sqrt[3]{y})(\sqrt[3]{x^2} - \sqrt[3]{xy} + \sqrt[3]{y^2})$. 20. $(2\sqrt[3]{a} + 3\sqrt[3]{b})(4\sqrt[3]{a^2} - 6\sqrt[3]{ab} + 9\sqrt[3]{b^2})$. 21. 4. 22. 5. 23. 2. 24. (x - 1)(x + 1)(y - 1). 25. $\frac{x - 1}{x}$. 26. $\frac{x - 2}{x}$. 27. (x + 3). 28. $\frac{b + 3}{a + 2}$. 29. 11. 30. -25. 31. 333. 32. 2. 33. 2. 34. -12. 35. -2. 36. 360. 37. 6. 38. -367. 39. 346. 40. -7. 41. $\frac{7}{x}$. 42. -3. 43. $\frac{1}{(m - 1)^2}$. 44. 1. 45. 2. 46. 1. 47. 10. 48. 6. 49. -2. 50. -12. 51. 14. 52. 0. 53. -17. 54. 0. 55. 64. 56. -1. 57. 1.

Преобразование различных выражений

1. 33. **2.** 6. **3.** 0,5. **4.** 2. **5.** 2. **6.** 4. **7.** $\sqrt{x} - \sqrt{y} - x^2 + xy - y^2$. **8.** $\frac{x}{x-y}$. **9.** $\frac{4}{\sqrt{x} + \sqrt{y}}$ **10.** 1. **11.** x. **12.** 1. **13.** 1. **14.** 2ab. **15.** $\sqrt[4]{a} + \sqrt[4]{b}$. **16.** $-27x\sqrt{a}$.

Линейные уравнения

1. -1,75. 2. -2,5. 3. -3. 4. 9,7. 5. 8. 6. $x \in R$. 7. $x \in \emptyset$. 8. $x \in R$. 9. $x \in R$. 10. $x \in \emptyset$. 11. $\frac{15}{16}$: 12. $x \in \emptyset$. 13. $x \in \emptyset$. 14. 5. 15. -6. 16. 6,3. 17. 16. 18. -4. 19. 36. 20. -1,25. 21. 14. 22. 0,6; 6. 23. 1. 24. 1,5. 25. -4,5. 26. -1,6. 27. -1. 28. 4. 29. 0,5. 30. 2. 31. 8. 32. $-\frac{2}{3}$.

Квадратные уравнения

1. -2; 3. **2.** -2; 9. **3.** -7; -1. **4.** 1; 8. **5.** 0,5; 1. **6.** $x \in \emptyset$. **7.** $-\frac{1}{3}$: **8.** 4; 6. **9.** -4; 1. **10.** -2; 4. **11.** 1; 4. **12.** 0; 6. **13.** -2,5. **14.** 1. **15.** 2,25. **16.** -9,7. **17.** ± 0 ,2. **18.** 0; 5. **19.** ± 1 . **20.** $x \in \emptyset$. **21.** ± 1 . **22.** $\pm \sqrt{2}$; $\pm \sqrt{3}$.

Теорема Виета

1. a) $x^2 - 10x + 16 = 0$; 6) $x^2 - 8x + 15 = 0$; B) $8x^2 - 2x - 1 = 0$. **2.** -24. **3.** -35. **4.** 3.

Рациональные уравнения

1. 4. **2.** 8. **3.** 24. **4.** 22. **5.** -3; 2. **6.** -4,5. **7.** 5. **8.** 1. **9.** $x \in R$, $x \neq \frac{2}{3}$. **10.** $x \in R$, $x \neq -2$. **11.** -1; 3; $\frac{3 \pm \sqrt{21}}{2}$. Указание: сделать замену $t = \frac{x^2 - 3}{x}$. **12.** $x \in \emptyset$. Указание: сделать замену $t = \frac{x^2 + 1}{x}$. **13.** $\frac{-1 \pm \sqrt{33}}{2}$; $\frac{-1 \pm \sqrt{5}}{2}$. Указание: сделать замену $t = x^2 + x + 1$. **14.** 1; 3. **15.** -3; 1. **16.** -1; 4; $\frac{12 \pm \sqrt{86}}{2}$. Указание: сделать замену $t = \frac{x-2}{2} - \frac{3}{x-2}$. **17.** -2; 5; $\frac{-1 \pm \sqrt{65}}{2}$. Указание: сделать замену $t = \frac{x+3}{5} - \frac{2}{x+3}$.

Иррациональные уравнения

1. 6. **2.** 11. **3.** 31. **4.** -2,5. **5.** 87. **6.** $x \in \emptyset$. **7.** 5. **8.** ± 4 . **9.** $x \in \emptyset$. **10.** -0,25. **11.** $x \in \emptyset$. **12.** -3; 0. **13.** -9; -8. **14.** 3. **15.** $x \in \emptyset$. **16.** 7. **17.** $x \in \emptyset$. **18.** 1. **19.** $x \in \emptyset$. **20.** -0,75. **21.** $\pm 2\sqrt{3}$. **22.** $x \in \emptyset$. **23.** $-\frac{1}{11}$. **24.** $\frac{5}{3}$. Указание: сделать замену $t = \frac{x+1}{x-1}$. **25.** 81. **26.** -2. **27.** 8. **28.** 0; 2,5. **29.** -3; 6. Указание: заметить, что $(x-3)^2 + 3x - 22 = (x^2 - 3x + 7) - 20$. **30.** ± 2 .

Системы уравнений

1. (1; 4). **2.** (1; -2). **3.** (3; -2). **4.** $x \in \emptyset$. **5.** $(x; 5-x), x \in R$. **6.** (2; 4), $\left(\frac{2}{17}; \frac{76}{17}\right)$. **7.** (-1; 6), (3; -2). **8.** (3; -2). **9.** (4; 5), $\left(-\frac{1}{2}; \frac{1}{2}\right)$. **10.** $\left(-\frac{1}{2}; \frac{9}{4}\right)$, (2; y), $y \in R$. **11.** (2; 1), (-1; -2). **12.** (4; 3), (-3; -4). **13.** (5; 1), $\left(5; -\frac{17}{2}\right)$, $\left(6 + \sqrt{46}; -4\right)$, $\left(6 - \sqrt{46}; -4\right)$. **14.** (-4; 2), (-4; -3), (3; 2), (3; -3). **15.** (4; 1), (1; 4). **16.** $\left(1 - \sqrt{2}; -2 + \sqrt{2}\right)$, $\left(-1 + \sqrt{2}; -2 - \sqrt{2}\right)$. **17.** $\left(3\sqrt{2}; \sqrt{2}\right)$

 $(3\sqrt{2}; -\sqrt{2}), (-3\sqrt{2}; -\sqrt{2}), (-3\sqrt{2}; \sqrt{2}).$ **18.** (8; 4), (4; 8). **19.** (9; 2). **20.** (4; 9), (9; 4), $(4 - \sqrt{15}; 4 + \sqrt{15}), (4 + \sqrt{15}; 4 - \sqrt{15}).$

Показательные уравнения

1.
$$-4$$
; -2 . **2.** 0,5. **3.** $-\frac{38}{3}$. **4.** $-2 \pm \sqrt{\frac{7}{2}}$. **5.** 1. **6.** -2 ; 2. **7.** 3. **8.** -3 ; -1 . **9.** -2 . **10.** -2 ; -1 . **11.** -0 ,25. **12.** 1. **13.** 2. **14.** 2. **15.** -1 . **16.** -3 . **17.** 1; $\log_3 5$, $\log_3 5$. **18.** $1 \pm \sqrt{2}$, $1 - \sqrt{2}$. **19.** $\frac{3 \pm \sqrt{5}}{2}$, $\frac{3 - \sqrt{5}}{2}$.

Логарифм положительного числа по заданному основанию

1. 25. **2.** 0,2. **3**. -3. **4**. 15. **5**. -2. **6.** 11. **7.** 42. **8.** 10. **9**. 4. **10.** 2. **11.** 19. **12.** 0,5. **13.** 13.

Логарифмические уравнения

1. 150. **2.** 2. **3.** 1,5; 10. **4.** 4. **5.**
$$\frac{6+3\sqrt{29}}{5}$$
. **6.** 2. **7.** 1,5. **8.** 100. **9.** -1. **10.** 10; 100000. **11.** 1; 256. **12.** $\frac{1}{10}$; $\frac{1}{\sqrt[8]{10}}$. **13.** 6; 11. **14.** 27. **15.** -3.

Уравнения с выборкой корней

1. 1;
$$\log_3 5$$
, $\log_3 5$. **2.** 2; $\log_2 7$, $\log_2 7$. **3.** $\log_{\frac{3}{2}} 3$; $\log_{\frac{3}{2}} 4$, $\log_{\frac{3}{2}} 3$. **4.** -4 ; 0, 0. **5.** 0; $-\log_2 19$, $-\log_2 19$. **6.** $\log_2 3$; $\log_2 5$, $\log_2 5$. **7.** $\log_3 2$; $\log_3 7$, $\log_3 7$. **8.** $\frac{1}{2}$; 2, $\frac{1}{2}$. **9.** $\pm \sqrt{2}$; $\pm \frac{1}{2}$, $\pm \frac{1}{2}$. **10.** -2 ; 1, -2 . **11.** 2; $2\sqrt{2}$, 2. **12.** -2 ; 16, -2 . **13.** $2\sqrt{2}$; $4\sqrt{2}$, $4\sqrt{2}$. **14.** 4.

Формулы тригонометрии и их использование для преобразования тригонометрических выражений

Вычисления и преобразования

1. (-6). **2**. 36. **3**. (-4). **4**. 12. **5**. 1. **6**. 8. **7**. 0,5. **8**. -0,75. **9**. -2. **10**. -22. **11**. -4. **12**. -6. **13**. -2. **14**. -5. **15**. 2. **16**. 0,4. **17**. 50. **18**. 2. **19**. 0,75. **20**. 0,3. **21**. -0,2. **22**. 48. **23**. -18. **24**. -0,2.

Тригонометрические уравнения

$$1. \left\{ \pm \frac{\pi}{6} + 2\pi k, k \in \mathbb{Z} \right\}.$$

2.
$$\left\{ \frac{\pi}{6} + 2\pi k, \frac{5\pi}{6} + 2\pi k, k \in \mathbb{Z} \right\}$$
.

$$3. \left\{ \pm \frac{5\pi}{6} + 2\pi k, k \in \mathbb{Z} \right\}.$$

4.
$$\left\{ 2\pi k, \pm \frac{2\pi}{3} + 2\pi k, k \in Z \right\}$$
.

$$5. \left\{ \pi k; -\frac{\pi}{4} + \pi k, k \in \mathbb{Z} \right\}.$$

6.
$$\left\{ \pi k; \frac{\pi}{3} + \pi k, k \in \mathbb{Z} \right\}$$
.

7.
$$\left\{ 2\pi k; \pm \frac{\pi}{3} + 2\pi k, k \in Z \right\}$$
.

8.
$$\left\{ \frac{\pi}{2} + 2\pi k; \frac{\pi}{6} + 2\pi k; \frac{5\pi}{6} + 2\pi k, k \in \mathbb{Z} \right\}$$
.

9.
$$\left\{ \frac{\pi}{6} + 2\pi k; \frac{5\pi}{6} + 2\pi k, k \in \mathbb{Z} \right\}$$
.

10.
$$\left\{\pm \frac{3\pi}{4} + 2\pi k, k \in Z\right\}$$
.

11.
$$\left\{ \frac{\pi}{2} + \pi k; \pm \frac{3\pi}{4} + 2\pi k, k \in Z \right\}$$
.

12.
$$\left\{ \frac{\pi}{2} + \pi k; \quad \frac{\pi}{6} + 2\pi k; \quad \frac{5\pi}{6} + 2\pi k, k \in Z \right\}$$
.

13.
$$\left\{\pm \frac{2\pi}{3} + 2\pi k, k \in Z\right\}$$
.

$$14. \left\{-\frac{\pi}{4} + \frac{\pi}{2}k, k \in Z\right\}.$$

15.
$$\left\{\pm \frac{2\pi}{3} + 2\pi k, k \in Z\right\}$$
.

16.
$$\left\{ \frac{\pi}{6} + 2\pi k; \quad \frac{5\pi}{6} + 2\pi k, k \in \mathbb{Z} \right\}$$
.

$$17. \left\{ \pm \frac{\pi}{3} + \pi k, k \in \mathbb{Z} \right\}.$$

18.
$$\left\{ \frac{\pi}{2} + 2\pi k; \quad \frac{\pi}{6} + 2\pi k; \quad \frac{5\pi}{6} + 2\pi k, k \in \mathbb{Z} \right\}.$$

19.
$$\left\{ \pi k; \pm \frac{5\pi}{6} + 2\pi k, k \in Z \right\}$$
.

20.
$$\left\{ -\frac{\pi}{4} + \pi k; -\frac{\pi}{3} + \pi k, k \in \mathbb{Z} \right\}$$
.

Уравнения смешанного типа

1.
$$\left\{ \frac{\pi}{4} + \pi k, k \in Z \right\}, \quad \frac{21\pi}{4}; \frac{25\pi}{4}.$$

2.
$$\left\{ \frac{\pi}{2} + \pi k; \pm \frac{\pi}{3} + 2\pi k, k \in \mathbb{Z} \right\}, -\frac{3\pi}{2}; -\frac{\pi}{2}; -\frac{\pi}{3}.$$

3.
$$\left\{\pm \frac{\pi}{4} + 2\pi k, k \in \mathbb{Z}\right\}, -\frac{9\pi}{4}; -\frac{7\pi}{4}.$$

4.
$$\left\{\pm \frac{\pi}{6} + 2\pi k; \pm \frac{5\pi}{6} + 2\pi k, k \in Z\right\}, \frac{17\pi}{6}; \frac{19\pi}{6}; \frac{23\pi}{6}.$$

5.
$$\left\{ \frac{\pi}{2} + \pi k; -\frac{\pi}{6} + 2\pi k; -\frac{5\pi}{6} + 2\pi k, k \in \mathbb{Z} \right\}, \quad \frac{3\pi}{2}; \frac{11\pi}{6}; \frac{5\pi}{2}.$$

6.
$$\left\{\pm \frac{\pi}{6} + 2\pi k, k \in Z\right\}, \frac{11\pi}{6}; \frac{13\pi}{6}.$$

7.
$$\left\{\pm \frac{\pi}{3} + 2\pi k, k \in Z\right\}, \frac{5\pi}{3}; \frac{7\pi}{3}.$$

$$\mathbf{8.} \left\{ -\frac{\pi}{3} + 2\pi k, k \in \mathbb{Z} \right\}.$$

9.
$$\left\{ \pi + 2\pi k; \pm \frac{\pi}{3} + 2\pi k, k \in \mathbb{Z} \right\}, \quad 3\pi; \frac{11\pi}{3}.$$

10.
$$\left\{ \frac{\pi}{6} + 2\pi k; \frac{5\pi}{6} + 2\pi k, k \in \mathbb{Z} \right\}, -\frac{19\pi}{6}.$$

11.
$$\{\pi k, k \in Z\}, 2\pi; 3\pi.$$

12.
$$\left\{ \frac{\pi}{4} + 2\pi k; \frac{3\pi}{4} + 2\pi k, k \in \mathbb{Z} \right\}, -\frac{7\pi}{4}; -\frac{5\pi}{4}.$$

13.
$$\left\{ \frac{5\pi}{6} + 2\pi k; \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z} \right\}, \frac{\pi}{2}; \frac{5\pi}{6}.$$

14.
$$\left\{-\frac{\pi}{2} + 2\pi k; \frac{3\pi}{4} + 2\pi k, k \in Z\right\}, -\frac{21\pi}{4}; -\frac{9\pi}{2}.$$

15.
$$\left\{-\frac{\pi}{6} + 2\pi k, k \in Z\right\}, \frac{35\pi}{6}.$$

16.
$$\left\{ \pi - arcctg \, \frac{4}{3} + 2\pi k, \, k \in \mathbb{Z} \right\}, \quad 3\pi - arcctg \, \frac{4}{3}; \, 5\pi - arcctg \, \frac{4}{3}.$$

17.
$$\left\{\pm \frac{\pi}{3} + 2\pi k, k \in Z\right\}, -\frac{11\pi}{3}.$$

18.
$$\left\{ \pi k; \frac{5\pi}{6} + 2\pi k, k \in \mathbb{Z} \right\}, \quad 2\pi; \frac{17\pi}{6}; 3\pi.$$

19.
$$\left\{ \frac{\pi}{6} + 2\pi k, k \in \mathbb{Z} \right\}, \frac{13\pi}{6}.$$
 20. 0.

Учебное издание

Антипина Наталья Валерьевна Баенхаева Аюна Валерьевна Леонова Ольга Васильевна Тимофеев Сергей Викторович

Математика

Учебное пособие для слушателей подготовительных образовательных программ

Издается в авторской редакции

Подписано в использование 07.05.20.

Издательство Байкальского государственного университета. 664003, г. Иркутск, ул. Ленина, 11. http://bgu.ru.